

The Microturbine: Why A Gas Engine May At Last Be Of Benefit To The Horticulture Industry.

Q.J. Mabbutt & A.D. Brown 11th September 2001

British Gas

The former company, 'British Gas', was always seen as the major promoter of end-use technologies

- Domestic
 - Condensing Boilers
 - CO Sensors
- Industrial
 - Regenerative Burner
 - Synthetic Natural Gas (SNG)

British Gas – The History

Key utilisation aspects of Natural Gas

- Natural Gas has always seen as a 'clean' fossil fuel in terms of its combustion products
- Plentiful and local (North Sea) supply made it ideal for widespread use in stationary and vehicular applications

Concentrated research in natural gas utilisation technologies

British Gas Research

Utilisation research focused towards multi-generation technologies:

- Cogeneration
 - Combined Heat & Power (CHP)
- Trigeneration
 - Heat/Coolth/Power
- Renewables
- Natural Gas Vehicles (NGV)
- Photovoltaics

Reciprocating Gas Engines

Advantages

- Range of sizes
- Wealth of experience with reciprocating technology
- Intrinsic efficiencies are high (28 35%)
- Operate at distribution gas delivery pressures (120 150 mbar)

Disadvantages

- Poor emission characteristics
- Frequent maintenance
- Reliability issues

Larger Gas Turbines

Advantages

- Good power to heat ratio (2:1)
- Ideal for combined cycle applications (CCGT = combined cycle gas turbine)
- Cost effective at certain sizes (>2 MW of electricity)
- Dry low-NO_x combustion techniques

Disadvantages

- Non-recuperated i.e. exhaust gas doesn't heat incoming gas
- High gas-delivery pressures (>15 bar i.e. 1.5 MPa)
- Complex
- Very sensitive to ambient conditions

History with Gas Engines

- Gas Engines promised good cost-effective performance
 - Usually based on reciprocating technology
 - Cheap installation
 - Some sites acted as thermal hosts with electrical export

In practice

- Engines were not as reliable as expected
- All usually required expensive exhaust gas clean-up if CO₂ loading was required in greenhouses
- Sites began to lose control of the installation
- Some schemes were terminated before the end of their useful life

History with Gas Engines (cont)

The Horticulture Industry

- Found the 'thermal host concept' for choosing the size of gas engines restrictive with respect to crop flexibility i.e. sizing based on the thermal requirement of a particular crop could be very restrictive and inefficient when growing a different crop
- Export of surplus electricity became less cost effective
- Suffered with poor reciprocating engine reliability
- Developed a resistance to 'new' CHP technology

Microturbine ~ New or Old

Small-scale gas turbine generators became a commercial reality in the mid-1990s

- Offering
 - 15 300 kW of electricity size range
 - Flexibility
 - Very low emissions
 - Good CHP potential (1.7:1 Power/Heat Ratio)
 - Small Footprint
- Issues
 - Gas boosting required
 - Higher capital expenditure than equivalent reciprocating engine
 - NEW ~ 'Here We Go Again' market resistance

The Microturbine ~ The essentials

Microturbine ~ Basic Cycle

Performance

Evaluation of in-service microturbine performance exhibited

- o 26 to 28% electrical efficiency
- Robust performance
- Wide range of user configurations
- Remote diagnostics and monitoring reduced turbine downtime
- User-maintained initiative with respect to turbine operation

Early Adopter

Horticulture market is generally characterised by

- Highly efficient operations
- Technically advanced
 - Outilising the latest computer control equipment
- Articulate
- Well informed
- Vertical and horizontal integration

Early Adopter

- 11 acre (4.5 ha) site
 Single 30 kW of electricity generator
 - Completed 6000 hours runtime
 - Exhaust into greenhouse without any gas clean-up
 - Shown to offer considerable like-for-like savings
 - Site-controlled operation of turbine to suit greenhouse crop

Summary

Microturbine has shown

- Potential in the Horticulture Industry
 - Offering power and heat for the site (no export)
 - Good long-term performance
 - Flexibility
 - Real Savings