North Carolina State University Phytotron 2012 Station Report for NCERA-101 Carole H. Saravitz

Accomplishment Summaries

Experiments at the NCSU Phytotron encompass many areas of research and a summary of our accomplishments is published annually on our website (http://www.ncsu.edu/phytotron/).

Impact Statements

Tables summarizing the usage of our facility by growth chamber type, department and crop are listed at the end of the report and a more detailed report is published annually on our website (<u>http://www.ncsu.edu/phytotron/</u>). Usage for all growth chambers in 2007 was 96% of the recommended optimal occupancy, or 79% of maximal occupancy (Table 1). The 17 individually programmed A-chambers were occupied at 131% of optimal capacity and the five "standard" A-chambers had a 64% optimal occupancy rate. For 2007, total A-chamber usage was 116% the recommended optimal occupancy. Usage of B-chambers was at 86% and C-chambers, 82 % for the year. 76 different projects were conducted in the Phytotron during 2011 by faculty and students from 9 departments in the College of Agriculture and Life Sciences (Table 2).

The Crop Science Department used the largest amount of space in 2011 (more than 32%, for 25 different projects). The Plant Pathology Department used 22% of the space for 13 projects. The Plant Biology Department used nearly 15% of the space for 10 projects, and Entomology used over 5% for 5 projects. Microbiology, and Soil Science each had a space use allocation of approximately 2%. 21% of the space used in the Phytotron during 2011 was used to grow Soybean (Table 3). Research with other agronomic crops included cotton (4%), corn (7.5%),) and tobacco (3%). Space for research on vegetable crops used 7% of the space in 2011, weeds, 2%; ornamentals, 1% and for trees, 3%. The 'Demonstration' category (1%) included space for plants grown for display during tours of the facility.

Selected Publications

Cary, H.J., Frank A. Blazich and Anthony V. LeBude. 2010. Seed Germination of Five Populations of *Rhododendron vaseyi*: Influence of Light and Temperature, J. Environ. Hort. 28(3):166-172. September 2010

Idris AM, Tuttle JR, Robertson D, Haigler CH, Brown JK (2010) Differential cotton leaf crumple virus-VIGSmediated gene silencing and viral genome localization in different *Gossypium hirsutum* genetic backgrounds. *Physiological and Molecular Plant Pathology* 75: 13-22, doi:10.1016/j.pmpp.2010.07.002

Khodakovskaya M, Sword C, Wu Q, Perera IY, Boss WF, Brown CS and H Winter Sederoff (2010). Increasing inositol (1, 4, 5)-trisphosphate metabolism affects drought tolerance, carbohydrate metabolism, and phosphate-sensitive biomass increases in tomato. Plant Biotechnology Journal 8:170-183

Li, R. and R. Qu. 2010. <u>High throughput *Agrobacterium*-mediated switchgrass transformation</u> Biomass and Bioenergy (2010), doi: 10.1016/j.biombioe.2010.11.025 (online)

Rapp RA, Haigler CH, Flagel L, Hovav RH, Udall JA, Wendel JF (2010) Gene expression in developing fibers of Upland cotton (*Gossypium hirsutum* L.) was massively altered by domestication. *BMC Biology* 2010, 8:139, doi:10.1186/1741-7007-8-139

Salinas-Mondragon RE, Kajla JD, Perera IY, Brown CS and HW Sederoff (2010) Role of inositol 1,4,5trisphosphate signaling in gravitropic and phototropic gene expression. Plant cell Envrion 33: 2041-55

Upchurch, Robert G. and Martha E. Ramirez. 2011. "Soybean Plastidal Omega-3 Fatty Acid Desaturease Genes GmFAD7 and GMFAD8: Structure and Expression," Crop Science, Vol. 51

Wherley BG, DC Bowman, TW Rufty. 2011. Effect of soil saturation on development and ¹⁵N-nitrate uptake efficiency of two warm season grasses emerging from dormancy. Journal of Plant Nutrition 34: 2039-2054.

Table 1. CHAMBER USAGE SUMMARY, 2011

Chamber	% Op	timal	% Maximum
A-chambers	(20 individual)	156	97
A-chambers	(2 standard)	110	69
A-chambers	(22)	152	95
B-chambers	(10)	85	85
C-chambers	(22)	93	93
Glasshouses	(5)	100	80
HID Walk-in	(2)	79	79
Tall Chamber	(1)	81	81

* Dimensions of Chambers are:

A = 8' x 12' x 7'h Optimal Usage = 96 B = 8' x 4' x 7'h % Maximal Usage = 79

C = 4' x 3' x 4'hH = 10' x 6' x 8'h

T = 16' x 12' x 7'-15'h

Table 2. DEPARTMENT USAGE SUMMARY, 2011

Department	% Total Use-Days	# Projects
Crop Science	32	25
Entomology	6	5
Horticultural Science	3	3
Microbiology	1	1
Phytotron	5	2
Plant Biology	13	10
Plant Pathology	15	13
Soil Science	1	3
Teaching	1	4
Visitor	22	9
Zoology	1	1

*87 Studies Conducted in the Phytotron During 2011

Table 3. CROP TYPE SUMMARY, 2011

Сгор	% Total Use-Days
Arabidopsis	7.6
Biofuels	0.3
Corn	8.5
Cotton	3.8
Demonstration	0.4
Fruit	1.5
Grasses	3.4
Hydroponics	1.6
Insects	2.8
Maintenance	0.6
Ornamentals	0.4
Other	21.9
Rice	2.6
Soybean	21.4
Tobacco	3.2
Trees ⁵	3.1
Turfgrass	7.9
Vegetables	7.2
Weeds	1.8

Includes:

^bCamelina sativa. Switchgrass ^cCorn, peas, mung beans.

Strawberries ^bHeliothis subflexa, cockroach

^aDogwood, Helleborus ^fArtemisia, Clover, Canola ^gOak

^b Bentgrass (*Agrostis palustris*), Bermudagrass, and Tall Fescue ^c Cucumber, Tomato, Pepper Japanese Stiltgrass, Meadow Beauty,