

# Effect of elevated CO<sub>2</sub> and harvest schedule on *Allium* biomass and sensory quality of *A. fistulosum*

Amanda Broome<sup>1</sup>, Ellen B. Peffley<sup>1</sup>, Leslie D. Thompson<sup>2</sup>, and David Wester<sup>3</sup> <sup>1</sup>Department of Plant and Soil Science, <sup>2</sup>Animal and Food Sciences, <sup>3</sup>Natural Resources Management, Texas Tech University, Lubbock, TX



## ABSTRACT

Plants of three Alliums were grown at 400 and 1200 ppm CO<sub>2</sub> in Environmental Growth Chambers. Shoots of these plants were harvested weekly, bimonthly, or at 70 days after planting (DAP). Shoots were harvested by severing at 50-mm and weight was (g) recorded. Japanese bunching onion (JBO) and bulbing onion had the greatest shoot biomass. Plants harvested one-time at 70 DAP weighed more than those harvested weekly and bi-monthly. Shoot weight depended upon harvest schedule and CO2. Shoots from plants grown under 400 ppm weighed more than those grown under 1200 ppm CO<sub>2</sub> when left undisturbed and harvested once at 70 DAP. JBO grown at 400 ppm were greener; consumer panelists (n=25) ranked sensory quality of JBO grown under 1200 and 2000 ppm CO<sub>2</sub> as more visually appealing at 28 DAP. JBO grown under 400 ppm CO<sub>2</sub> were ranked more visually appealing at 70 DAP

### INTRODUCTION

The goal of this research was to select Allium species and a harvest strategy that produced maximum edible biomass and appealing sensory quality while minimizing crew-time handling of plant material. Green shoots of plants harvested multiple times provide edible biomass for extended periods. This unique accumulation of edible biomass in leaves and bulb make onion a versatile candidate for fresh consumption. It has been observed that plants grown under elevated CO<sub>2</sub> have an initial increase in growth, but as plants age growth. In addition, plants grown under high CO<sub>2</sub> also show damaged chloroplasts and reduced chlorophyll (Arp, 1991). Slow saturation of carbohydrate sinks exposed to elevated CO<sub>2</sub> over time resulted in decreased growth (Del Pozo et al., 2005; Mitchell et al., 1999).

6

fr. to

Meigh

#### MATERIALS AND METHODS

Plants of A. fistulosum, Japanese bunching onion (JBO), A.cepa, builbing onion, and A. scheenoprasum, chive were grown hydroponically in growth chambers at 400 and 1200 ppm CO<sub>2</sub> and irrigated with recirculating Hydro-sol<sup>®</sup> nutrient solution. Experimental design was a completely randomized block with repeated measures; data was analyzed using SAS 9.1. Shoots were removed 50-mm from media surface at 28 DAP repeated weekly, bimonthly, or 70 DAP. JBO was grown separately under 400, 1200 and 2000 ppm CO<sub>2</sub>, harvested bimonthly for visual sensory. Ranking of sensory quality for visual speal was 1 to 6 (dislike very much to like very much).



# RESULTS



Figure 1. Weight of shoots of *Allium* species grown under ambient (400 ppm) and elevated (1200 ppm)  $CO_2$  harvested once a 70 DAP, (p>0.05, protected LSD).



DAP Figure 3. Weight of shoots of Allium species harvested weekly. Species means at a harvest followed by the same letter are not different, (p>0.05, protected LSD).

| CO <sub>2</sub> (ppm) | Species | Cumulative Shoot Weight by Harvest          |                   |                   |
|-----------------------|---------|---------------------------------------------|-------------------|-------------------|
|                       |         | One-time                                    | Bi-monthly        | Weekly            |
| 400                   | JBO     | 5.826 (0.347) a <sup>1</sup> A <sup>2</sup> | 1.687 (0.347) b A | 1.468 (0.291) b A |
|                       | Bulbing | 5.169 (0.347) a A                           | 1.667 (0.375) b A | 1.607 (0.284) b A |
|                       | Chive   | 1.654 (0.362) a A                           | 1.386 (0.347) a A | 1.056 (0.354) a A |
| 1200                  | JBO     | 4.148 (0.347) a B                           | 2.191 (0.347) b A | 1.542 (0.291) b A |
|                       | Bulbing | 3.006 (0.347) a B                           | 2.232 (0.347) a A | 1.857 (0.291) b A |
|                       | Chive   | 1.718 (0.362) a A                           | 1.401 (0.347) a A | 1.132 (0.284) a A |

Table 1. Cumulative shoot weight of JBO, bulbing onion, and chive grown under 400 and 1200 ppm CO<sub>2</sub> harvested one-time, bi-monthly, and weekly over 70 days. 'S species means within a CO<sub>2</sub> level followed by the same lowercase letter are not significantly different (P>0.05). <sup>2</sup> CO<sub>2</sub> means within a species and harvest followed by the same uppercase letter are not significantly different (P>0.05).



Figure 2. Weight of shoots of Allium species, JBO, BO (bunching onion), and CC (chive), grown under two CO<sub>2</sub> levels harvested bi-monthly, (p>0.05, protected LSD).



Figure 4. Weight of shoots of Allium species grown at two CO<sub>2</sub> levels harvested weekly. CO<sub>2</sub> level means followed by the same letter are not significantly different across harvests, (p>0.05, protected LSD). Harvest 28 DAP and 56 DAP are significantly different (noted by \*).



Figure 5. Consumer panelists ranking of sensory quality (n=25) of JBO grown under three  $\mathrm{CO}_2$  levels harvested bimonthly. Rankings were 1 - dislike very much, to 6 - like very much.





#### DISCUSSION

Two events led to the observed lower weight of shoots of plants grown at elevated CO<sub>2</sub>. As onion matures, a bulb is formed and carbohydrates are shuttled from the shoots to the bulb. In this experiment, the carbohydrates were removed repeatedly when the shoots were severed; carbohydrates were not present to be shuttled to the bulb. Cumulative weight of shoots removed from plants weekly and bi-weekly weighed less than those harvested one time (Table 1). Cumulative piomass was greater when grown under ambient (Table 1). This phenomenon has been observed in other crops (Del Pozo et al., 2005; Mitchell et al., 1999). When shoots were harvested once at 70 days, the carbohydrates were likely shuttled to the sink (bulb) in plants grown under elevated CO<sub>2</sub>.

### CONCLUSION

JBO and builbing onion weighed more overall than chive for both weekly and bi-monthly harvests (Figure 3). One-time 70 DAP harvest yielded more shoot weight than weekly and bi-monthly. Allium plants grown under elevated CO, weighed more than those grown under ambient CO, when harvested one-time (Figure 1), but did not weigh more when harvested weekly and bi-monthly (Figure 2 and 4). Consumer panelists ranked the sensory quality of JBO grown under 1200 and 2000 ppm as more visually appealing at 28 DAP, but ranked JBO grown under 400 ppm the most visually appealing at 70 DAP (Figure 5).

Arp, W. J. 1991. Effects of source-sink relations of photosynthetic acclimation to elevated CO<sub>2</sub>. Plant, Cell and Environment 14: 869-875.

Del Pozo, A., P. Perez, R. Morcuende, A. Alonso, R. Martinez-Carrasco. 2005. Acclimatory responses of stomatal conductance and photosynthesis to elevated CO<sub>2</sub> and temperature in wheat crops grown at varying levels of N supply in a Mediterranean environment. Plant Science 169: 908-916.

Mitchell, R.A.C., C.R. Black, S. Burkart, J.I. Burke, A. Donnelly, L. de Temmmerman, A. Fangmeier, B.J. Muholland, J.C. Theobald, M van Oijen. 1999. Photosynthetic responses in spring wheat grown under elevated CO<sub>2</sub> concentrations and stress conditions in the European unultiple-site experiment "ESPACE-wheat". European Journal of Agronomy 10: 205-214.

Supported by Johnson Space Center and Kennedy Space Center, Graduate Student Research Program, NASA