Use of artificial light in Horticulture

- With daylight (supplemental light in greenhouses)
- Without daylight (growth chambers; controlled environment)

Let's make things better.

Let's make things better.

Let's make things better.

Spectrum of electromagnetic radiation

Let's make things better.

Sensitivity of the human eye and green plants (photosynthesis) to light

Let's make things better.

Sensitivity to light

- Sensitivity for humans:
 irradiation unit in lux
- Sensitivity for plant growth:
 irradiation unit in µmol photons m⁻² s⁻¹ PAR = Photosynthetic Active Radiation (400 - 700 nm)

How does a plant react to light?

- Chlorophyll absorbs light from 400 700 nm for growth
- 8 photons needed to fix 1 CO₂
- preference for blue and red light
- needs a minimum of light for growth
- can be damaged with too much light
- spectral composition influences plant development (red/far-red ratio)

How does a plant react to light?

Let's make things better.

Stem elongation is stimulated by:

Low R:FR ratio

High R:FR ratio

 decrease in red to far-red ratio (R:FR) of the light

 decrease in the amount of blue light

Let's make things better.

What influences the choice of lamps for controlled environments?

The following four slides consider factors influencing the choice of lamps:

- Spectral composition of the light emitted
- Differential responses of species to spectral composition
- The quantity of irradiance required by plants

Spectral composition (colour_temperature T_c)

Spectral composition (colour_temperature T_c)

- Daylight T_c is > 5000 K (noon)
- ratio red/far-red (± 2 for daylight)
- ratio blue/red (± 0.8 for daylight)
- sensitivity depends on the species and the level of irradiance.

DHILI

Spectral composition / species

- For growth: light sources with a T_c of > 4000 K (fluorescent 840 and metal halide) are satisfactory for most plants.
- For control of plant development, be careful! Some plants (strawberry), need a low red/far-red ratio (incandescent) at the end of the day, while others (chrysanthemum, euphorbia) perform well without a change.

Let's make things better.

What level of irradiance do we need (daily sum of radiation) ?

 High irradiance plants (tomato, rose) 20-30 mol m⁻² d⁻¹

- Low irradiance plants (saintpaulia, spatiphyllum)
 5 mol m⁻² d⁻¹
- To compare: daily radiation in a Dutch summer: 40 mol m⁻² d⁻¹
- This can be reached with an average irradiance of 600 µmol m⁻² s⁻¹ (PAR) for 18 hours.

Design of chamber / light installation

- reflection of walls / ceiling
- position light-source; internal/external reflector
- height
- uniformity

Example of growth in more layers

et's make things better.

Comparison of some light sources

	HPSodium	Metal halide	Fluorescent
µmol s ⁻¹ W ⁻¹	± 1.85	± 1.35	± 1.3
T _c	2000	4500	2700-6500
Red/far-red	9	6	5 - > 20
Blue/red	0.2	0.8	0.5 – 1

Light levels	High	High	Low / high
Reflector	External	External	Internal
Safety	Breakable	UV-radiation	Unbreakable lamp available

Wishes and developments

- Fibre optics
 - advantage: loss of heat
 - disadvantage: loss of light
- LED's
 - advantage: no heat / spectral control
 - disadvantage: still low efficiency
- Xenon
 - advantage: continuous spectrum
 - disadvantage: lots of heat and UV radiation
- Spectral control
 - advantage: control of plant development
 - disadvantage: too complex?

