Estimating Carbon Use Efficiency, Growth Respiration, and Maintenance Respiration from Crop Gas Exchange Measurements

Marc van Iersel

Why Photosynthesis? • Plants contain approximately: - 40% C - 45% O - 6% H • Leaf photosynthesis and plant growth or yield are poorly correlated

Whole Crop Photosynthesis and Growth

- Direct measure of C incorporated into the plant
- With continuous measurements, net carbon gain can be determined
- Daily net carbon gain closely related to growth rate
- Cumulative carbon gain closely related to dry mass

6/13/2008

Growth and maintenance respiration

- $R = R_m + R_g = r_m x$ weight + $r_g x$ growth
- R / weight = $r_m + r_g x$ growth/weight

$$= r_m + r_a \times RGR$$

 $\mbox{IF}\ \mbox{r}_{m}$ and \mbox{r}_{g} are constants, they can be estimated from linear regression

Calculations

- Growth rate and plant dry weight were calculated from CO₂ exchange measurements and carbon content of the plants
- RGR (growth rate / dry weight) and specific respiration rate (R_{dark} / dry weight) were calculated from these data

Conclusions

- Continuous whole plant CER gives:
 - Direct measure of growth
 - Physiological components of growth
 - Carbon use efficiency
 - growth respiration
 - maintenance respiration

