Biopharmaceutical Production under Controlled Environments: Photosynthetic Rate, Soluble Protein Concentration and Growth of Transgenic Tomato Plants Expressing a Yersinia pestis F1-V Antigen Fusion Protein

<u>Ryo Matsuda¹</u>, Chieri Kubota¹, Lucrecia M. Alvarez², Jessica Gamboa¹ & Guy A. Cardineau²

 ¹ Dept. of Plant Sciences, Univ. of Arizona, AZ, USA
 ² Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State Univ., AZ, USA

Plant-Made Pharmaceuticals (PMP)

Transgenic plants that express highvalue pharmaceutical protein have great potential for inexpensive and scalable protein production and delivery system.

Our Final Goal

To establish an efficient PMP production system under controlled environments

EuroFresh Farms, Willcox, AZ

- Fruits of transgenic tomato plants transformed with a gene encoding vaccine protein can be used as 'edible' vaccine.
- Greenhouse tomato production has advantages over open-field tomato production in terms of high productivity and high containment.

<u>Plague</u>

is a deadly infectious disease caused by the bacterium *Yersinia pestis*.

Y. pestis

F1-V protein

is a predominant antigen fusion protein against plague.

f1-v transgenic tomato plants were produced, which can accumulate F1-V protein in fruits (Alvarez et al. 2006).

Objectives

 To characterize growth and development of the *f1-v* transgenic tomato plants under the environmentally-controlled greenhouse conditions

 To evaluate fruit and protein productivity of the *f1-v* transgenic plants by comparing with that of a commercial greenhouse cultivar

Tomato (Solanum lycopersicum L.) Transgenic lines (background: TA234) 'F1-V' With f1-v gene 'F1-V/P19' With f1-v and p19 genes (Alvarez et al. submitted) Non-transgenic cultivars 'TA234' Wild type 'Durinta' Commercial GH cultivar

196-d-old plants

Experimental GH (BSL-2)

Floor space:66.9 m²Peak height:5.2 mPlant density:2.4 m²

Rockwool substrate

Environmental Conditions inside GH (from Sep 29, 2007 to Feb 26, 2008)

Mean daytime temp.: 19-22°C Mean nighttime temp.: 18-19°C Daily PPFD integral: 15-25 mol m⁻² d⁻¹ Mean relative humidity: 60-90%

Measurement Items

 Stem length Number of leaves Light-saturated rate of photosynthesis in leaves Weekly Fruit yield Total soluble-protein (TSP) concentration in fruits F1-V concentration in fruits

Measurement Items

 Stem length Number of leaves Light-saturated rate of photosynthesis in leaves Weekly Fruit yield Total soluble-protein (TSP) concentration in fruits F1-V concentration in fruits

Growth & Photosynthesis

Stem Length 'Durinta' > 'F1-V' = 'TA234' = 'F1-V/P19'

Number of leaves 'Durinta' = 'F1-V' = 'TA234' = 'F1-V/P19'

Light-saturated rate of photosynthesis
 'Durinta' ≥ 'F1-V' = 'TA234' = 'F1-V/P19'

'Durinta': Commercial GH cv.
'TA234': Wild type
'F1-V': *f1-v* transformant
'F1-V/P19': *f1-v* & *p19*supertransformant

Fruit Yield

Total Soluble Protein (TSP) in Green Fruits

Estimated Protein Productivity

Conclusions

•Transgenic tomato plants expressing plague vaccine protein showed lower yield but higher protein production in fruits than 'Durinta', a commercial greenhouse cultivar.

 A tomato cultivar that has high fruit productivity is not necessarily a suitable cultivar for biopharmaceutical protein production.

Future Perspectives

 Analysis of F1-V vaccine protein productivity of the two transgenic lines is now in progress.

 In future studies, effects of environmental conditions (e.g., light intensity, temperature) and effects of nutritional conditions (e.g., N concentration) on TSP and F1-V production will be examined.

Acknowledgements

Mark Kroggel Shawn Fleck Dr. Gene Giacomelli Dr. Judith Brown (Univ. of Arizona)

Dr. Ron Richman (Sonora Transplant)

Arizona's First University.

CEAC, Univ. of Arizona Science Foundation Arizona (SFAz)