Assessing Uniformity in Soil Plant Atmosphere Chambers

D.H. Fleisher, D.J. Timlin, and V.R. Reddy

March 8 – 12 2008 International Meeting on Controlled Environment Agriculture Crop Systems and Global Change Laboratory USDA-ARS Beltsville, MD USA

SPAR Chambers

'Soilbin' Growth Chambers

- -12 chambers
- -Realistic Root Volume (2m x 0.5m x 1 m)
- -Precise and Repeatable Environmental Controls
- -Automated Irrigation / Fertigation
- -Whole Canopy Gas Exchange (A, ET)
- -Root Imaging / Tracing
- -Soil Moisture
- -5-Minute Automated Data Logging

Background / Goals

- Question: Are treatments influenced by chamber bias?
 - Limited replication (time and space)
 - Quantitative (regression) vs. Qualitative (means) analysis
 - Implications for scientific quality, transferability, design

- Goal: Assess crop response differences between and within chamber to identical 'treatment' conditions
 - Between all 12 chambers
 - Are differences significant? Why?
 - Within each chamber
 - Are there location effects? Are they consistent?

Approach

• Fast-growing, uniform crop

 Dwarf wheat (*Triticum aestivum L. cv.* USU-Apogee)

Identical production conditions
16h 23/18C; 740 µmol mol⁻¹ CO₂
10 L fert. (1/2 Woody's)

Analysis approach

- Summary of growth environment
- Crop responses:
 - Biweekly measurements
 - Dry weights
 - Whole canopy photosynthesis

Evaluate for between chamber variability and within

Spatial effects on within-chamber variation Row x Position

1. Environmental Summary

22.7 [CO2](µmol mol⁻¹) Air temperature (C) Day Night 18.8 Day Night Chamber number (#) **Relative humidity (%)** 58.7 Uniform T, CO₂, PAR Problems with RH control Chambers 3,5,9 > 10,11,12 24H average C Chamber number (#)

Top: Average 24H Day / Night Temperature **Bottom: Average 24H Relative Humidity**

Average 24H Day / Night CO₂ Concentration

2. Leaf Appearance Rates (LAR)

• LAR: 0.26

- <u>Between</u> chamber:
 - 0.08 leaves d⁻¹

• Impact?

- Within chamber:
 - No row effect
 - Position 1 > 2 > 3:

0.04 leaves d⁻¹
– Impact?

Stem Elongation Rates (SER)

Dry Mass Harvests

Total D.M. - Chamber Basis

- Similar trend for yield
- Between chamber :
 - NS at final harvest
 - CH12 ~2.3 g plant⁻¹ less
 - Leaf area / mass
- <u>Within</u> chamber:
 - Position:
 - P1 > P2 > P3
 - ~8.5 g plant⁻¹ (!)
 - No consistent Row effect

Gas Exchange (High / Low CH)

2.5 Ch 1 (highest) Ch 12 (lowest) Phet (md $\cos m^2 d^1$) 2.0 1.5 1.0 0.5 Cloudy 0.0 -10 20 40 50 60 30 Day after emergence (days)

Daily Pnet for Chambers 1 and 12

- Gas exchange data supports quantifiable differences
- Differences are reflected in seasonal and most diurnal responses

Summary of Findings

- <u>Between</u> Chambers:
 - Developmental rate effects present
 - Too small to be meaningful?
 - Dry matter values
 - Final total harvest NS, differences in leaf, stem
 - Gas exchange values support dry mass findings
 - No consistency between RH and crop response
- <u>Within</u> Chambers:
 - Positional effect critical
 - Shading, Wind

What's Next?

- Quantify variability / chamber bias
 - Covariate analysis
 - e.g. quantify chamber bias on dry matter production and remove from analysis of treatment effect
 - e.g. quantify error between seasonal gas exchange and total C content in dry matter and adjust gas exchange analysis in other experiments
- 'Universality' of uniformity
 - Variability tied into crop sensitivity?
 - Monocot vs Dicot
 - Technical / Season issues
 - Significant role RH will play on non-measured responses (e.g. water stress experiment)

Acknowledgments

• CSGCL technicians & UMD students:

- Robert Jones
- Jackson Fisher
- Emily Warnock

- -Meredith Bilek
- -Suzanne Farhood
- -Nicole Hackman
- -Richard Mathieson

Crop Systems & Global Change Lab

