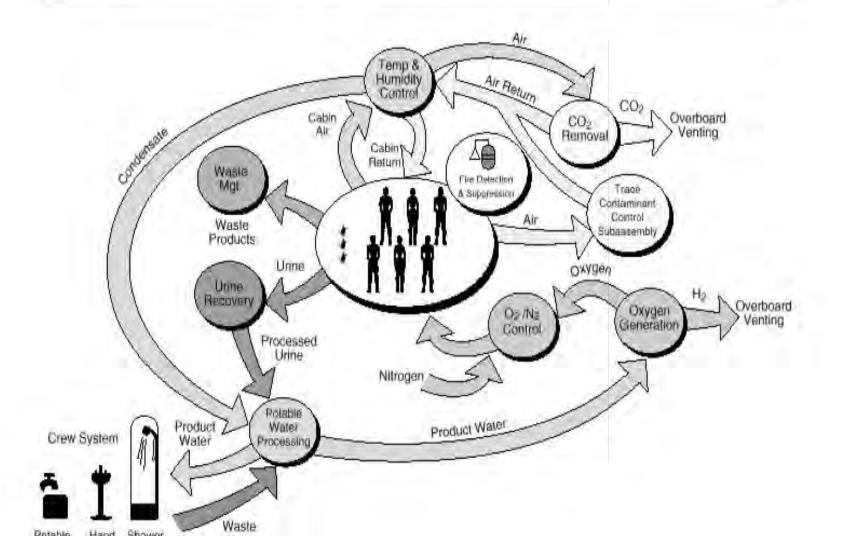


Hypobaria, Hypoxia and Ethylene Influence Growth and Gas Exchange of Lettuce Plants


Fred T. Davies Jr., Chuanjiu He and Ronald E. Lacey

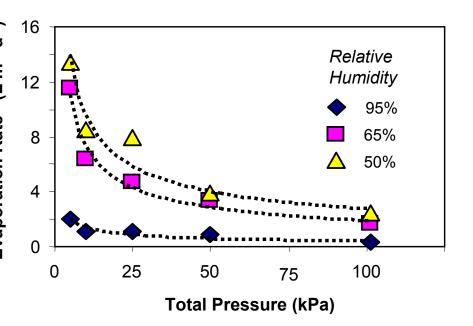
Depts. of Horticultural Sciences & Biological and Agricultural Engineering, Texas A&M University, College Station, Texas

Chemical & Physical Systems

Space Station Regenerative ECLSS Flow Diagram (Current Baseline)

lant Growth at Sub-Ambient Atmospheric Pressures

Advantages of Low Pressure System


- ⇒ Less structure needs to be shipped into space.
- ⇒ Less gas leakage from low pressure crop production to vacuum of Moon or nea vacuum of Mars.
- ⇒ Crew could tend crops without suiting up.

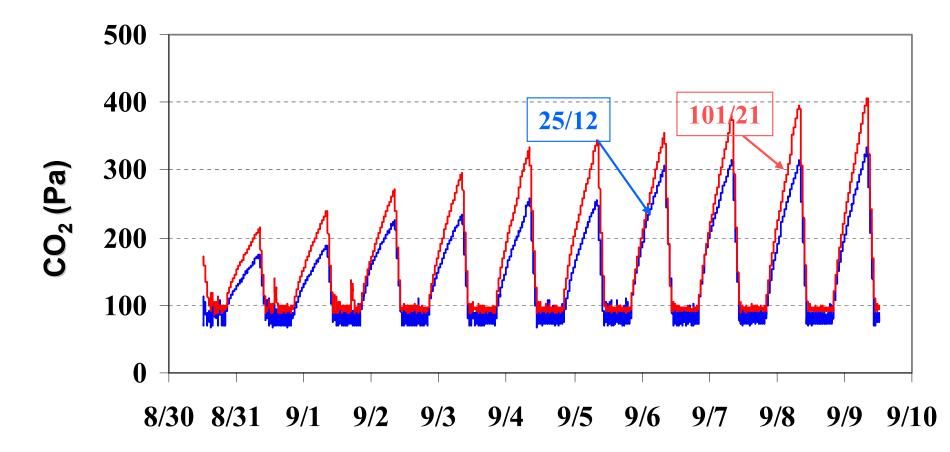
⇒ Won't have to ship or produce as much Nitrogen gas

Subambient Atmospheric Pressure

⇒ Increased gaseous diffusion.

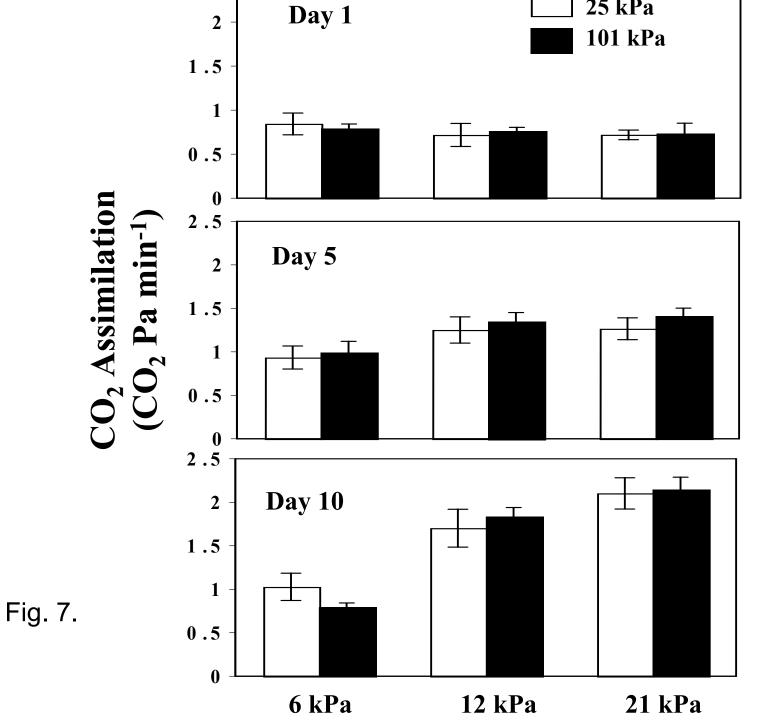
⇒ Loss of boundry-layer resistance.

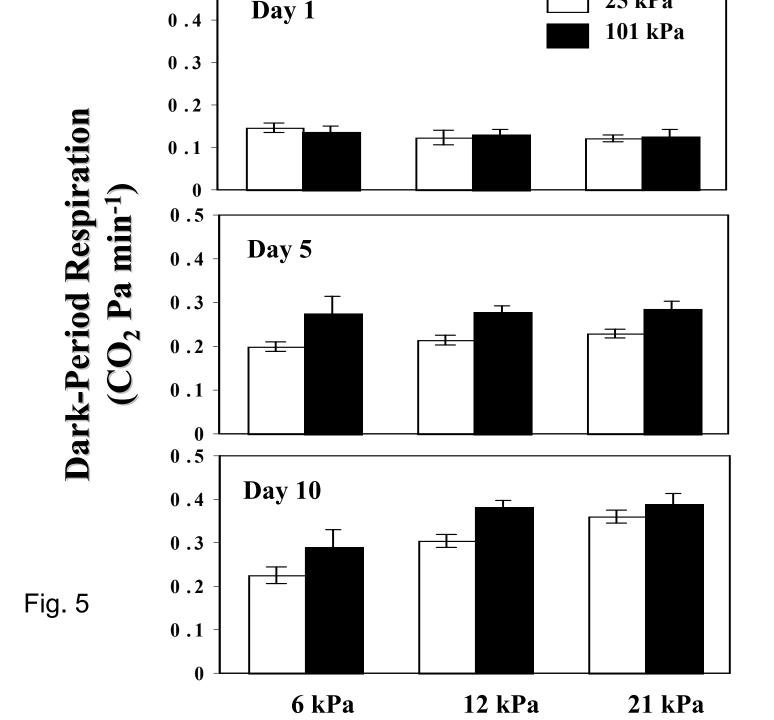
Low Pressure Plant Growth (LPPG) System

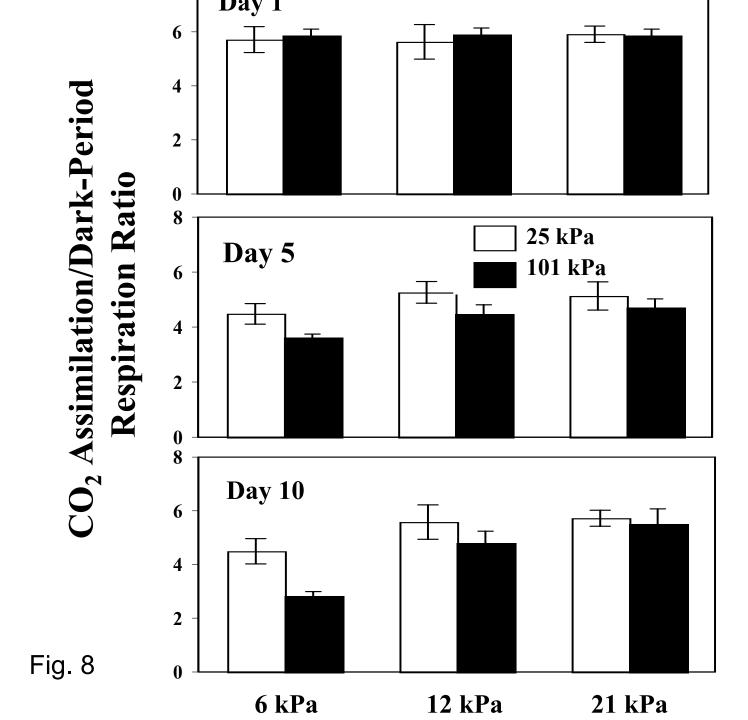

- ⁹ 6-chambered, clear acrylic, modular LPPG system which uses weak-acid electrolyte oxygen sensors, nondispersive infrared CO₂ sensors and a pressure transducer.
- Controls the partial gas pressures of oxygen, nitrogen and carbon dioxide from 20 kPa to 200 kPa (101 kPa = ambient).
- Has cross flow heat exchanger to control humidity and condensation.
- Changes in CO₂ tracked during the light and dark periods on a whole canopy basis.

 Characterize the influence of hypobaric conditions on plant growth of lettuce (*Lactuca sativa*).

- Characterize influence of hypobaric conditions on plant gas exchange
- Separate the effects of hypobaria and hypoxia.


CO₂ Assimilation & Dark-Period Respiration




Duration of Experiment (Date)

- 10-day study; 25kPa/ 12kPa pO₂; 101kPa (ambient)/ 21kPa pO₂
- Setpoint of 100 Pa pCO₂ during light period.

Effect of Total Pressure and Partial Pressure of Oxygen (pO₂) on _ettuce Plant Growth, Chlorophyll and Relative Water Content (RWC)

Total pressure (kPa)	pO₂ (kPa)	Leaf area (cm ²)	SLA (cm ² g ⁻¹)	Leaf DM (g)	Root DM (g)	Total plant DM (g)	Chl (µg. cm ⁻²)	RGR (mg.g⁻¹. day⁻¹)
25	6	857	44.5	2.7	0.4	3.2	42.1 ± 1.7	0.18
	12	1190	50.1	3.6	0.8	4.4	39.9 ± 0.5	0.22
	21	1349	54.5	3.5	0.8	4.3	37.3 ± 0.5	0.21
101	6	832	37.6	2.3	0.3	2.7	$\textbf{37.8} \pm \textbf{1.4}$	0.16
	12	1172	49.9	3.4	0.8	4.2	37.8 ± 0.7	0.21
	21	1250	54.2	3.5	1.0	4.4	34.2 ± 0.7	0.22
Signif.	Pres.(P) O ₂	NS ***	NS ***	NS ***	NS **	NS ***	***	NS ***
	PxO ₂	NS	NS	NS	NS	NS	NS	***

- 10-day studies; seedling transplants 20-days old.
- Setpoint of 100 Pa pCO₂ during light period

Day 0

C. 25/12 pO

10

B. 101/21 pO

D. 101/21 p

Fig 11 **2 p0**₂ **B.** 101/21 pO Day 5 in Turner, Interne С. 25/12 р

B. 101/21 pO

Λ • 23/12 pO₂

Fig 12

Day 10

les

С. 25/12 рО

D. 101/21 pO

<u>Summary</u>

- Growth was comparable between low (25kPa) and ambient (101kPa) pressure lettuce plants during 10-day studies.
- Low pO₂ (6 kPa) reduced plant growth compared to 12 and 21 kPa pO2. (oxidative phosphorylation limited)
- Low pO2 (6 kPa) caused greater growth reduction & stress with ambient (101 kPa) than low (25kPa) pressure plants — trend in lower SLA, leaf + total plant DM
- Leaf chlorophyll was higher at 25 than 101kPa; RWC was unaffected by total pressure or pO_2 .

- 25/12 kPa pO₂ had comparable CO₂ assimilation and 25% lower dark-period respiration than 101/21 kPa pO₂ (ambient) plants.
- Greater efficiency of CO₂ assimilation/dark-period respiration (ratio) with low pressure plants (6 kPa pO₂). [↑ diffusion rate, ↓ boundary layer res???]

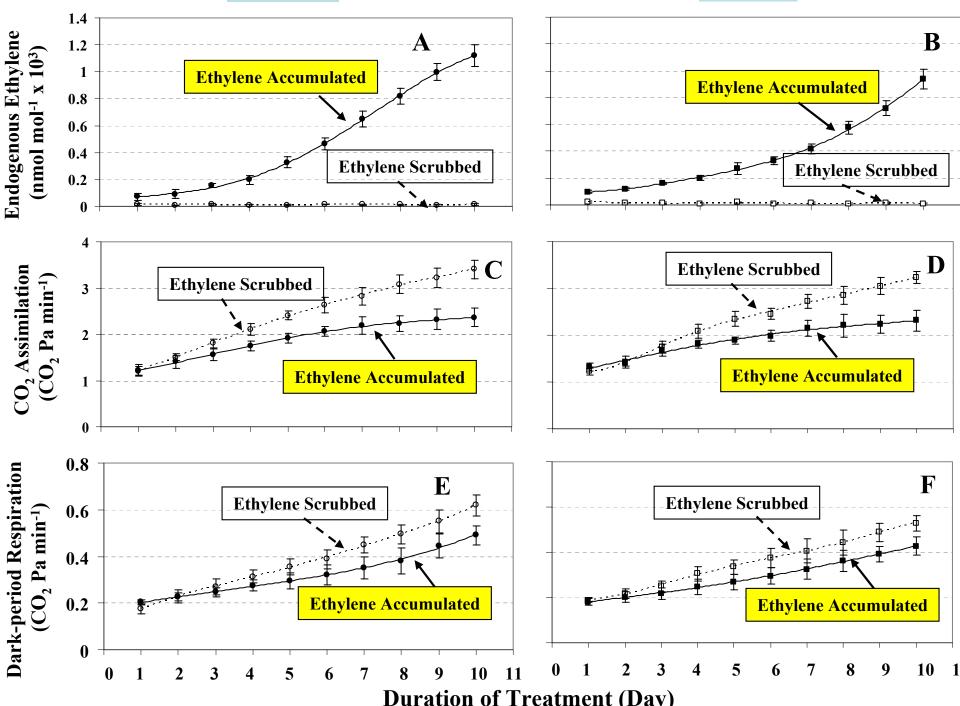
• Hypobaria \neq Hypoxia.

(Paul et al., 2004; less half genes up-regulated or down-regulated; response to hypobaria is unique)

(Richards et al., 2006; no effect 5 photorespiratory enzymes – Rubisco; hypobaria – no altered regulation photorespiratory pathway)

Elevated Ethylene Levels

 Elevated levels of ethylene occur in CEA and microgravity- spaceflight environments, leading to adverse plant growth & sterility (Wheeler et al., 1996; Bugbee, 1999; Stutte, 1999).


- Russian Space Station Mir: ethylene ranged from 1000 to 1700 nmol mol⁻¹ (ppb) (Campbell et al., 2001).
- International Space Station (ISS): 50 nmol mol⁻¹ (ppb) ethylene.

 Characterize influence of ethylene on plant gas exchange (CA, DPR) and growth of lettuce (*Lactuca sativa*) under ambient (101 kPa) and hypobaric (25 kPa) conditions

Effect of Total Atmospheric Pressure and Ethylene [(C2H4), either scrubbed or endogenously accumulated] on CO₂ Assimilation (CA), Dark-Period Respiration (DPR) and the CA /DPR ratio

Total Pressure (kPa)	C ₂ H ₄ Treatments	C ₂ H ₄ level in Chamber (nmol mol ⁻¹)	C _A (CO ₂ Pa min ⁻¹)	DPR (CO ₂ Pa min ⁻¹)	C _A /DPR Ratio
101	Accumulated	1119 ^a	2.45 ^b	0.50 ^{bc}	4.85 ^b
	Scrubbed	11 ^b	3.40ª	0.62ª	5.46 ^{ab}
25	Accumulated	936ª	2.30 ^b	0.46 ^c	5.03 ^{ab}
	Scrubbed	8 ^b	3.12ª	0.53 ^b	5.83ª
Significance	Pressure (Pres)	NS	NS	**	NS
	C ₂ H ₄	***	***	***	*
	Pres x C ₂ H ₄	NS	NS	NS	NS

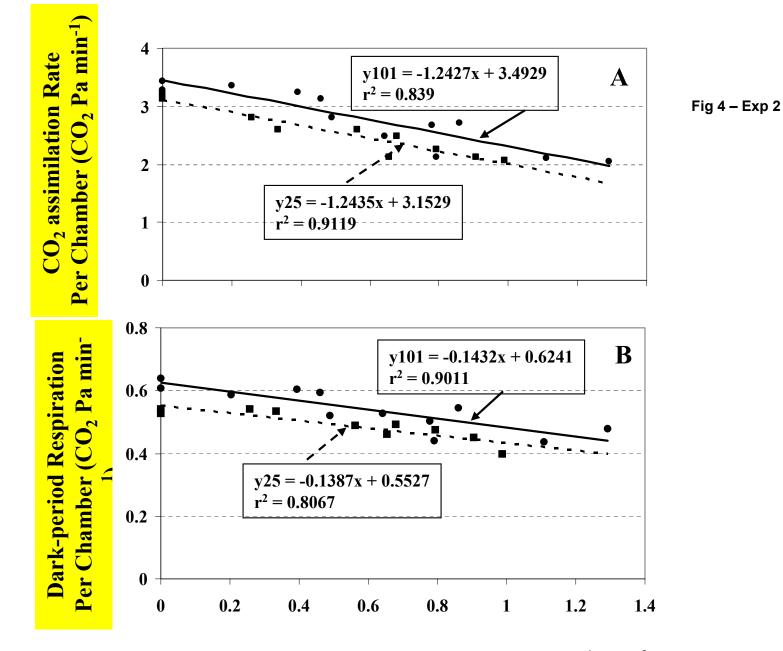
Effect of Total Atmospheric Pressure and Ethylene $[(C_2H_4), either scrubbed or endogenously accumulated]; Lettuce ($ *Lactuca sativa*L cv. Butter Crunch)

Pres (kPa)	C ₂ H ₄ Treatment	Leaf area (cm²)	SLA (cm² g⁻¹)	Leaf DM (g)	Root DM (g)	Total Plant DM (g)	RGR (mg g ⁻¹ d ⁻¹)	RWC (%)
101	Accumulated	211 ^b	52.3 ^b	6.04 ^b	0.97 ^b	7.02 ^b	0.173 ^b	94.2
	Scrubbed	297 ^a	56.4 ^a	7.31 ^a	1.22 ^a	8.53ª	0.195ª	94.7
25	Accumulated	230 ^b	52.9 ^b	6.19 ^b	0.98 ^b	7.17 ^b	0.178 ^b	94.1
	Scrubbed	321ª	56.6ª	7.42ª	1.14 ^a	8.56ª	0.201 ^a	94.7
Significance	Pres	NS	NS	NS	NS	NS	NS	NS
	C ₂ H ₄	***	**	**	**	**	***	NS
	Pres x C ₂ H ₄	NS	NS	NS	NS	NS	NS	NS

1.1.1

C

Ethylene Accumulated


101 kPa

B

D

Ethylene Scrubbed

Endogenous Ethylene Concentrations (nmol mol⁻¹ x 10³)

Summary

• Ethylene reduced C_A, DPR and plant growth of both ambient and hypobaric plants.

 Negative, linear correlation of increasing ethylene up to 1000 nmol mol⁻¹ (ppb).

 Hypobaria had no significant effect on endogenous ethylene production

Acknowledgements

NASA- NAG-9-1067 — Plant Growth and Metabolism at Sub-Ambient Atmospheric Pressures.

NASA- NAJ04HF53G — Plant Growth at Sub-Ambient Atmospheric Pressures with Control of the Partial Pressures of Constituent Gases.

http://aggie-horticulture.tamu.edu/faculty/davies/research/nasa.html