PP Systems 2023-2024 Station Report

NCERA-101: Committee on Controlled Environment Technology & Use

John Ertle and Tim Doyle

PP Systems, Amesbury, MA 01913

New equipment

- Lab space for plant cultivation in development for use in new PP Systems research initiatives. New updates will be forthcoming as this space is outfitted for 2024 experiments.
- Common lab and hydroponic equipment for use in controlled environment studies were collected in 2023 and 2024.
- Acquired six Arize Factor ML-300 fixtures. The fixtures themselves are dimmable LEDs appropriate for a range of research applications planned for 2024.

Activities and accomplishment summaries

- 2024 marks the 40th year since PP Systems inception.
- In 2023, PP Systems hired John Ertle, Ph.D., as Plant Physiologist to develop an on-site research capacity with goals of investigating leaf-level physiological research, developing new features for existing portable gas exchange systems like the CIRAS-4, and advancing development of new instrumentation.
- In 2023, a cooperative partnership with local you-pick operation Cider Hill Farm was established to conduct leaf-level physiological research on the plants grown at this Massachusetts farm.
- In 2023, John Ertle conducted a preliminary field study at Cider Hill Farm investigating the equivalency of far-red photons (700 750 nm) to traditional PAR photons (400 700 nm) on five field-grown plant species (apple, corn, lettuce, strawberry, swiss chard). This project will be continued in 2024.
- In 2024, PP Systems joined the North Carolina State University Controlled Environment Agriculture Coalition (NCSU-CEA). Further updates will be forthcoming as partnerships and projects are established with those in this Coalition.
- PP Systems webinar series enters its 5th year, with 10 total publicly available webinars planned for 2024. Webinar topics share an underlying reliance on methods including leaf chlorophyll fluorescence or gas exchange of leaves or soils.
- Development of new Arabidopsis whole-plant chamber for gas exchange studies was developed and tested in 2023 and 2024. Ongoing testing is planned for Q2 2024 in collaboration with clients examining Arabidopsis physiology.
- James Bunce, Ph.D., Plant Physiologist with PP Systems identified that *Zea mays* daytime photosynthetic rate can be reduced by nighttime temperatures ≤ 20 °C. In the context of climate change, low nighttime temperatures in areas of corn production could severely limit the yield of this important crop.

Published Written Works:

 Bunce, J.A. "Photosynthetic Acclimation to Temperature Is Affected by Night Temperature in *Zea* mays." *Photosynthetica* 62, no. 1 (February 22, 2024): 112–15. https://doi.org/10.32615/ps.2024.008.