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May phylloclimate help phenotyping?
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Phenotyping & environment

Evolution
of
populations

Development
of
individuals

(individu, intra-life) spatio-temporal scale (population, generations)

From the neo-Darwinian model




Phenotyping & environment

=> 2 ques&iov\s / environment

» Which variables do characterize it?

» At which spatio-temporal scale(s) should they be characterized?
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Phenotyping & environment
What about plant-environment interaction?

environment = resources + information vector

external constraint

s

environment

modify /
. 7

Landscape, canopy, plant, organ, ... : which relevant scale for environment?




Phenotyping & environment

Which environment? canopy vs plant vs organ

from canopy phenotyping (plot ~ mean plant)
towards individual plant phenotyping

Ruckelshausen, A., et al. 2009. "BoniRob—an autonomous field robot
platform for individual plant phenotyping." Precision agriculture




Phenotyping & environment
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various
systems !

« not the field, but a field ! »
Dr Trevor Garnelt




Which scale for plant-environment studies?

From the plant point of view From the environment point of view

Canopy

-> plant -> voxel
-> interacting organs -> close organs

=> Focus on organ scale
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Microclimate

UV, PAR, NIR, TIR
“blue, red *

. B

photosynthesis
photomorphogenesis
pathogens

energy budget

Phenotyping & environment

Interface physics - biology

wind speed
temperature
humidity
[€O;]

. &

air-leaf exchanges
thigmomorphogenesis
enerqgy budget

surface
temperature

within
temperature

. &

growth & development
photosynthesis
quality
pathogens

by individual plant organs : phylloclimate (chelle, 2005)

quantity
wetness duration

. B

fungal pathogens
enerqgy budget




Space & time variability
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High variability at short time steps (sunflecks) ~ => At which scale studying biological processes?

B Threshold
= Exponential
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Phylloclimate

Measurement of 3D spatial distribution

* Small sensors: experimentally difficult (plot), plant perturbation
* Distant sensors: indirect measurement, hidden parts, 2D-3D matching




Phylloclimate
Modeling of 3D spatial distribution

integration

3D structure global budget

Vy.zE S, q(¥.2) =g (¥,2)+ f fR(x,y,z)- T(x,yv) -g(x,y)dx---

xeES

=> solving: Monte-Carlo, discretization, nested, etc



Phylloclimate

Modeling state of art

* Radiation (PAR, R:FR, etc) : operational models
* Temperature : leaf, fruit: 2nd step: modeling in progress
* Water: (less studied)

splash dispersal: in progress
leaf wetness: starting

(Fruit: Saudreau et al, 2007;

Chelle et al, 2007 .
( ) Leaf: Chelle & Gutschick, 2010) (Saint-Jean et al, 2004)




Why phylloclimate may be important when phenotyping?

{Agronomy Environments

\ Recording “ 3aCc 1500 g/pot ...
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Why phylloclimate may be important when phenotyping?

{Agronomy Environments

Cultivation 38'C 1500 g/pot ...
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Why phylloclimate may be important when phenotyping?

What happens if
Phenotype . . .
the environment is wrongly estimated?

GENOTYPE | f ENVIRONMENT
N

y  /

R4
o

assigning variance components

. treatment
locus 3 locus 4 plant stage (environment)

locus 2 >
,glocus 5
\ |
locus 1 v unresolved
a0
8 12 16 20

King GJ, Amoah S, Kurup S (2010) Exploring and Exploiting .
Epigenetic Variation in Crop Plants. Genome 53:856-868. Dful_\' temperature
amplitude (°C)

plant to plant

Percentage

Wheat,, Grignon, june 2012




Why phylloclimate may be important when phenotyping?

What if the environment is misestimated? |G=P/E
butif EZE?

An example with fluctuating leaf temperature

Mean leaf temperature = 18°C Latent period Z. triticii

= Knowing same E (T = 18°C),
=> £2P=>2G!

= Knowing #E,
=> zP=> G?
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<!> from controlled env. to field phenotyping




Why phylloclimate may be important when phenotyping?

Where do we phenotype plants?

In growth chamber In greenhouse In field

& {’Jn}
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But mainly, for the 3 systems, we characterize mesoclimate (sometimes micro-climate)

eg air temperature, incident radiation above plants




Why phylloclimate may be important when phenotyping?

BUT, the differences between meso- and phyllo-climate depend on the growing environment !

Radiation

Wind ol ,
¢ 7 W
o _é“@ ;’;,M,,“ (fx' ‘%";%)dm%//@ﬁ '\

Leaf energy budget varies between experimental conditions - for a same Tair (meso), Tleaf differs (phyllo)
— Same genotype may lead to different phenotypes depending on the system (despite the same mesoclimate!)
= Estimating phylloclimate would enable a more robust estimation of the genotype-phenotype relationship




Why phylloclimate may be important when phenotyping?

Characterizing the environment actually driving the phenotype of an individual

A common solution:

using Controlled Environment (phytotron)

with the hope to « fix » the plant environment,
and so to set up reproductible phenotyping experiments

=> but is light so really “fixed” in growth chambers?
between chambers and within a given chamber? At which scale?

A focus on the case of the light environment




Why phylloclimate may be important when phenotyping?

Diversity!
= Chamber types y

.

——
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= Lighting systems: simple vs. complex, isotropic vs. directional




Light heterogeneity

= Spatially (on a horizontal plane)

A E<180 pmol/s/m?
W 180<E<210
210<E<240
240<E <270
WE>270

= Spatially (in 3D)

=> What is the irradiance of individual plant (organ)?



Light phylloclimate in phytotrons
Estimating plant (organ) irradiance
= by measurement

=> difficult at the organ scale
=> Commonly approximated by taking pictures from zenith

= by coupling measurement and simulation

e.g., " Projecting incident radiation on 3D plant” (Chenu et al, 2005)

Measuring the “incident” radiation above the given plants using the “6-face

Turtle” PAR sensor
Generating the 3D architecture of plants using AMAP software
Calculating the irradiance of the 3D mock-up lit by 6 virtual “equivalent” sources

using Archimed software (Dauzat, FSPM’ 04)

= Limitations may exist: difficulty of accurately sampling the “incident” radiation
both spatially and directionally:
e directional lighting systems

=" by modeling e tall plants
3D light transfer e.g. using Monte Carlo ray tracing --> the sec2 model (chelie et a1, 2007)




Light phylloclimate in phytotrons

Simulation with the sec2 model
» The given growth chambers

¢ 2 // ramps with 18 Philips HPIT
| o R | Vo 400W lamps each
chamber - | 48 .l | £ and a focusing system (3 mirrors)

Strader walk-in

e glossy and grey walls

Conviron PGR15

reach-in chamber | grey walls
: * 2 x 6 OSRAM Sylvania 100W Lamp

e 4x 4 Sylvania GTE Cool White 160W
Neon
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Spatial variability simulation

Strader
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Light phylloclimate in phytotrons

Light phylloclimate simulation

Sec2 enables
the simulation of
heterogeneous canopies
e.g. contrasted morphological phenotypes




Light phylloclimate in phytotrons

Plant irradiance simulation

Arabidopsis & Strader Conviron Maize & Strader

The irradiance of an individual
depends both
on the phytotron type
AND
on the plant / canopy architecture

Plant irradiance



Evaluation of the method based on the projected leaf area

Plant irradiance (center location) Plant irradiance (corner location)

At the

importance of the
plant architecture

o Arabidopsis | ﬁ eg rosette vs tall plant

Vertical approximation
Vertical approximation

M Maize 200 200

Reference Reference

X Rye-grass

At the
importance of the
specific
leaf orientation
and position (shading)
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Why phylloclimate may be important when phenotyping?

Do not forget greenhouses !

™ "o 4 ) -y P s +4 v
pnenotyping platrorn

Lloreng Cabrera-Bosquet, Christian Fournier, Nicolas Brichet, Claude Welcker, Benoit Suard and Frangois Tardieu

MR LEPSE, INRA, Manpellier SupAgro, F-34060, Moezpellier, Franc

Dedicated to greenhouse with a lot of individuals
Combine measurements and use of a turbid-medium model
( RATP, Sinoquet) to predict plant irradiance

Limit of the voxel size ~hypothesis of the turbid medium




Why phylloclimate may be important when phenotyping?

{Agronomy Environments

Cultivation \ Recording — ' 3gc 1500 g/pot ...

\J 2512081 39C 1500 g/pot ...
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Why phylloclimate may be important when phenotyping?

Phylloclimate models may help to design phenotyping system

Designing phenotyping systems that limit the environment artifacts

Reverse lighting problem: using a 3D model and Genetic algorithm to optimize the lighting system / homogeneity

AR EERE

Improving Light Position in a Growth Chamber
through the Use of a Genetic Algorithm
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Why phylloclimate may be important when phenotyping?

Phylloclimate models may help to design phenotyping system

Designing phenotyping systems that limit the environment variations

Reverse lighting problem: using a 3D model and Genetic algorithm to optimize the lighting system / homogeneit

Improving Light Position in a Growth Chamber
through the Use of a Genetic Algorithm

Satisfying but uncommon results

Future: Optimize the light system / plant irradiance homogeneity?
Develop “agile” phenotyping systems ?




Why phylloclimate may be important when phenotyping?

Do not forget greenhouses !

MIIE Iz ORIGINAL RESEARCH ARTICLE
published: 18 February 2014

f{ii® S I
PLANT SCIENCE doi: 10.3389/fpls.2014.00048

Optimizing illumination in the greenhouse using a 3D
model of tomato and a ray tracer

Pieter H. B. de Visser' *, Gerhard H. Buck-Sorlin? and Gerie W. A. M. van der Heijde "0 :

' Department of Greenhouse Horticulture, Wageningen University and Research Centre, Wageningen, Netherlands

New lighting systems
eg LED, hybrid, 3D,
may offer more degrees of freedom
to design more efficient systems

== | \p/i\
==z M. Chelle / phylloclimate & plant phenotyping
= SCIENCE & IMPACT

Crop duration 1 whole year

e HPS 83.6 kg / 100%

Hybr LED 87.2 kg / +4.3%
Hybr Dir 84.9kg/ +1.6%
Hybr Diff 89.1 kg / +6.6%

Waéehingen URO ||




Why phylloclimate may be important when phenotyping?

{Agronomy Environments

Cultivation Recording
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Why phylloclimate may be important when phenotyping?
Help to interpret (design) indirect measurement

vis
Color
Morphology
NIR/SWIR Geometry FLU
Leaf water content Chlorophyil content
Leaf thickness PSII efficiency

TIRLWIR Hyperspectral
Leaf temperature Stress spectral indices
Stomatal conductance

0

Water Temperature Light Humidity
Current Opinion In Piant Biology

3D transfer equation
MODELING EFFECTS OF ILLUMINATION AND PLANT GEOMETRY ON LEAF
REFLECTANCE SPECTRA IN CLOSE-RANGE HYPERSPECTRAL IMAGING

Mohd Shahrimie M.A*', Puneet Mishra', Stien Mertens*®, Stijn Dhond*?,
Nathalie Wuyts**, Paul Scheunders'

'iMinds - Vision Lab - University of Antwerp, Belgium

Phenotyping with Advanced 3-D Simulation

Improving Sheet-of-Light Based Plant ’ j/ :
Px.  Ga

Franz Uhrmann, Lars Seifert, Oliver Scholz, Peter Schmitt, and

Giinther Greiner
Abbildung 1: Pllanzeamodel] (links). Simulationsergebnis mat einer (Minte) und drei (rechs)
Laser-Kamera-Paaren: Dargestellt sind die erfassten Bereiche der Pllanze

The CALSIF project aiming at developping new field fluorescence sensor
Y Goulas, M. Chelle, F. Baret, | Moya, F Daumard

.037
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Why phylloclimate may be important when phenotyping?

{Agronomy Environments

\ Recording “ 3aCc 1500 g/pot ...
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Towards model-assisted phenotyping

Model assisted dissection of the genotype x environment
interaction

F Tardieu, LI Cabrera, C. Welcker INRA
. g AT SEAR Plant model

parameters used
as phenotyped
traits
+

Individual plants

Dromadair

biogemma syngenta

.039
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Towards model-assisted phenotyping

http://ricephenonetwork.irri.org

ébé Global Rice  GRISP Global Rice Phenotyping Network
§f Science

CGIAR Partnership ‘ C”.Gd ﬁ:
AfricaRice

Physiological Model greatly enhances GWAS Plant model

when used to dissect d
SR Multi-Environment Field Phenomics param eters use

ey for Climate Adaptation Traits as p hen otyped

0, Michael Dingkuhn, Physiologist/modeler .
traits

%
L.
S Approach: - Conclusion +

Use E variability
to extract response

» Large diversity for phenology & cold tolerance M u |t|‘

‘©
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o
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* Multi-E trait variation dissected by RIDEV model e nVi ronme nt

* Genotypic model parameters as traits

Number of environments ~~0° Model parameters give much stronger GWAS signals
than raw data
.040
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Also useful to
phenotype root-
soil interactions

It exists
~ phylloclimate
models for soils

Towards model-assisted phenotyping

Model-assisted phenotyping of root system
architecture and function

Xavier Draye
Guillaume Lobet
Mathieu Javaux

Crop Physiology and Plant Breeding
Soil and Water Resources
Université catholique de Louvain, Belgium
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Phenotyping & phylloclimate

Towards collaborative plant modeling...
interdisciplinarity, sharing, factorizing, etc

Emergence of plant modeling platforms

e.g. OpenAlea plateform INRIA-INRA-CIRAD
A

1. Load the database ood loaf data
of leaves. - <

2. Fit the leaves with <

Nurbs curves. l ulate 100 plants
3. Simplify the mesh > y lI cpfg

of each leaf. (13 hmz \ ’“’d' |

1. Build geom etric models
for leaf and stem symbol ‘V" P'° '""d"‘"
6. Parse the output . c c

string of cpfg and build a tu(lc e(or‘tru(lkn ]

D model f—j
8. Construct the geometry of uh

lNl)djVL‘ll l lrlb ition and a set
of plant ge

10. PlantG L visualization linl |
———

11. Color leaves according
to their light
interception effidency

(Pradal et al, 2008, FPB)




Why phylloclimate may be important when phenotyping?

mronments
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Why phylloclimate may be important when phenotyping?

Talke-home messages

J Characterize the environment at the right spatio-temporal scales
(Thinie to phylloctimate @)
" to avoid misunderstanging of the GXE
= Distribution (variance) >> average (fluctuation)
= to easy the integration of data coming from various phenotyping systems

O Phylloclimate models may be useful in improving the chain of phenotyping
J Model-assisted phenotyping may take benefits from phylloclimate (e.g. FSPM, assimilation)

1 The emergence of big data approach in phenotyping would simplify the down-scaling
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