Energy consumption in controlled environments: supplemental lighting and CO₂ systems

Kale Harbick, Lou Albright and Neil Mattson

harbick@cornell.edu www.cornellcea.com

CEA research at Cornell

- Energy modeling
 - Lighting
 - HVAC
 - Carbon footprint
 - Cost
- Plant experiments
 - LED vs HPS
 - CO₂ / DLI
 - Deep pond hydroponics
 - Spinach disease mitigation (*Pythium*)

- Control systems
 - Lighting
 - Shade
 - HVAC
 - CO₂

Cornell CEA Team		
Plant Science	Engineering	
Neil Mattson (director)		
David de Villiers	Kale Harbick	
Jonathan Allred	Tim Shelford	
Erica Hernandez	Lou Albright (emeritus)	
Bob Langhans (emeritus)		

Building energy modeling

• Decades of research

- ASHRAE
- US DoE
- NREL
- Simulate building energy consumption
 - Calculate loads and system response
 - TMY3 data sets for weather
- Benefits
 - Can be used for existing buildings or proposed designs
 - Model interactions (e.g. lighting and cooling)
 - Simulate performance and estimate cost of upgrades
 - Compare control systems

Energy balance in CEA buildings

- Internal loads
 - Lights
 - Evapotranspiration
 - Latent cooling load
 - Sensible heating load
 - In plant factories/vertical farms, internal loads dominate

- External loads
 - Solar
 - Conduction
 - Infiltration
 - Ventilation
 - In greenhouses, external loads often dominate

Loads and set point errors determine HVAC system response

Modified EnergyPlus/OpenStudio

Greenhouse lettuce (Butterhead)

- PAR DLI target: 17 mol/m²/day
 - Tipburn over 17
 - Needs extra air circulation
- 70 85% of light is natural (i.e. free)
- Evaporative cooling
- > 20,000 head/day/ha (5 oz / 140 g)

CEA Greenhouse (lettuce)

Ithaca 70% light from sun 30% light from lamps

Long Island 85% light from sun 15% light from lamps

Importance of light control

Typical outdoor light per day (Ithaca, NY)

LASSI control

- "Light and shade system implementation"
 - Lou Albright et al
- Predicts natural light accumulation based on first few hours after sunrise
 - Prediction based on set of heuristics that are tunable for different climates
 - Lights on if predicted sunlight is insufficient
 - Deploys shades if predicted sunlight is too much
- Schedules artificial light in off-peak hours as much as possible

LASSI control

Typical outdoor light per day (Ithaca, NY)

Inside greenhouse with LASSI

Savings: LASSI vs threshold

	Elmira, NY	Minn., MN	Phoenix, AZ
Lighting Electricity	24%	28%	56%
Energy costs	10%	12%	23%
		\$80K/ha/y *	

* Assumes \$0.056/kWh off-peak (10pm – 7am), \$0.088/kWh on-peak, \$34/MWh gas

LASSI CO₂ Control

• Virtual light integral

 $PAR_{virtual} = PAR_{actual} \frac{\ln(2.66E4) - \ln(400)}{\ln(2.66E4) - \ln(CO_2)}$

- Model uptake and loss through ventilation/infiltration
- At each control step, determine lowest cost combination of light/CO2
- Predict ventilation based on outdoor temperature
- Recent improvement (~10% more savings):
 - Also supplement CO2 when conditions met:
 - Low light month
 - DLI is behind target for current hour
 - Sun is out

Savings: CO₂ vs basic LASSI

	Elmira, NY	Minneapolis, MN
Lighting Electricity	58%	64%
Energy + CO ₂ costs	10% (19%)	8% (19%)
	\$40-50K/ha/y (\$130-140K/ha/y)*	

() indicates savings over threshold control

* Assumes \$0.056/kWh off-peak (10pm – 7am), \$0.088/kWh on-peak, \$34/MWh gas, \$0.25/kg CO₂

Plant factory

Warehouse

- 100% supplemental light
- Multiple layers possible
 - But just one layer in results presented here
- Mechanical cooling system

Sensible applications

- Research
- Space
- South pole
- Heating costs >>> elec. cost
- But vegetable plant factories in contiguous U.S. don't fall in these categories!

Humidity implications

- Lights add sensible heat
- ET removes sensible heat
- ET adds latent heat

- Heat entering a space represents a "cooling load"
- Heat leaving a space represents a "heating load"
- Impossible to remove moisture using a cooling coil without also reducing temperature (sensible cooling)

Case 1: sensible > latent

- Common coil capacity
 - 75% sensible cooling
 - 25% latent cooling

- Can result in a plant factory if:
 - Suboptimal plant spacing
 - Suboptimal light efficacy
 - Poor airflow
- Light power > 2x ET power

Case 2: sensible < latent

- Coils remove the excess moisture
- But overcooling results!
- Reheat: heat must be added back somehow

- Can result in a plant factory if:
 - Optimal plant spacing
 - High light efficacy
 - Good airflow
- Light power < 2x ET power
- Example:
 - 1.7 μ mol/J @ 17 mol/m²/d -> 117 W/m²
 - $ET = 67 W/m^2$
 - net sensible heat: 50 W/m²
 - net latent heat: 67 W/m²

Previous work *

- 3 to 12x lighting energy used in plant factory vs greenhouse, depending on location
- With HVAC energy also included:
 - 1.5 to 5x total energy used in plant factory vs greenhouse (contiguous U.S.)
 - Location
 - HVAC system details (i.e. heat exchanger, reheat system, economizer)
 - ET model
- Moving away from equator favors plant factory
 - Crossover somewhere in Alaska/Canada

Savings: with CO₂ vs without

	Minneapolis, MN
Lighting Electricity	53%
Energy + CO ₂ costs	26%
	\$283K/ha/y *

* Assumes \$0.056/kWh off-peak (10pm – 7am), \$0.088/kWh on-peak, \$34/MWh gas, \$0.25/kg CO₂

Conclusions

- Greenhouses consume much less energy for equivalent yield in most climates
 - CO₂ supplementation helps both environments
- Any technology improvements (e.g. lighting efficacy) will help both building types
- CO₂ savings potential is sensitive to:
 - Cost of electricity
 - Cost of CO₂
 - Infiltration rate
 - Ventilation control strategy

Future work

- Improve ventilation prediction for CO₂ controller
- Model additional HVAC system designs for plant factories
- Explore "floating" control options, e.g.:
 - Acceptable humidity range: 50 70%
 - Acceptable temperature range: 19 24 C
 - Before supplemental light is to be used, drive air humidity and temperature to lowest acceptable values
 - Close greenhouse
 - Supplement CO₂ until temp/humidity exceed upper thresholds
- Model semi-closed greenhouse systems
 - Small mechanical cooling system for shoulder months to minimize ventilation requirements

Thank You

Kale Harbick

harbick@cornell.edu www.cornellcea.com

