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PREFACE 

Lighting is a central and critical aspect of control in environmental research for plant research 
and is gaining recognition as a significant factor to control carefully for animal and human 
research. Thus this workshop was convened to reevaluate the technology that is available today 
and to work toward developing guidelines for the most effective use of lighting in controlled 
environments with emphasis on lighting for plants but also to initiate interest in the development 
of improved guidelines for human and animal research. 

For plant research, the ultimate requirement has been to provide lighting that mimics sunlight 
both in intensity and in spectral balance. In the early part of this century, tungsten lamps were 
tried, then in the 1950's fluorescent lamps, followed by xenon lamps, and more recently high 
intensity discharge lamps. However research with all of these lamp systems has been plagued 
with problems with unbalanced spectrum and/or excessive amounts of infra-red energy. As a 
result most research has been undertaken with light levels that have not simulated sunlight either 
in intensity or spectrum. With the ongoing concern over global climate change, a renewed 
interest in duplicating sunlight has surfaced for there is a general recognition that simulation of 
sunlight is needed for controlled environment research in order to quantify the impact of climate 
changes on our natural environment. Also NASA is promoting the use of plants in 
bioregenerative life support systems for long term space bases and needs to optimize the use of 
lamp lighting for efficient production in these systems. 

There are no generally accepted guidelines for plant scientists for lighting intensity or for the 
required light spectrum for growth of plants. This is partly because requirements differ for 
different species of plants but principally this has resulted because of the lack of definitive data 
on plant response to light and also varying opinions by different scientists on what is needed by 
plants. Yet guidelines are needed. These guidelines are needed to provide direction for 
manufacturers in the construction of controlled environment facilities and to provide 
information for cost-effective requests by scientists planning new acquisitions and upgrading 
existing facilities. 

There are a number of established guidelines for lighting in human and animal environments. 
Development of new lighting guidelines is necessary for three reasons: 1) recent scientific 
discoveries show that in addition to supporting the sensation of vision, light has profound non
visual biological and behavioral effects in both animals and humans, 2) federal regulations 
(EPACT 1992) are requiring all indoor environments to become more energy efficient with a 
specific emphasis on energy conservation in lighting, 3) lighting engineers and manufacturers 
have developed a wealth of new light sources and lighting products that can be applied in 
animal and human environments. 

The workshop was aimed at bringing together plant scientists and physical scientists to interact 
in the discussions. It involved participation of biological scientists involved in studying 
mechanisms of light reactions and those involved in utilizing lighting for production of plants 
and maintenance of animals in controlled environments. It included participation of physical 
scientists from universities and government involved in research as well as those from industry 
involved in producing lamps and in construction of controlled growth facilities. 
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The specific objectives addressed at the workshop were: 

i) in-depth examination of the spectral and intensity requirements for the primary 
responses in plants that are controlled by light and exploration of the requirements for 
animals and humans. 

ii) discussion of the new technologies in lamps that could have usefulness for controlled 
environment lighting. 

iii) review of the available and new technologies for distribution of light and control of 
excess infra-red radiation. 

iv) discussion of guidelines for lighting of plants in controlled environments and lighting 
for animals and humans. 

Specialists from universities, government, and industry were invited to make formal presentations 
and help lead workshop discussions. The meeting was open to the scientific community and 152 
individuals were registered for the workshop. All attendees were encouraged to participate in the 
discussions. 

These formal presentations are published in the proceedings along with contributions as Short 
Reports that were prepared by some participants following the workshop. 

Draft guidelines, as developed by the organizing committee are included as a final chapter in the 
Proceedings. 
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GENERAL LIGHTING REQUIREMENTS FOR PHOTOSYNTHESIS 

Donald R. Geiger 

Department of Biology, University of Dayton, Dayton, OH 45469-2320, U.S.A. 

PROPERTIES OF LIGHT THAT ARE IMPORTANT FOR PHOTOSYNTHESIS 

A review of the general lighting requirements for photosynthesis reveals that four aspects of light 
are important: irradiance, quality, timing and duration. These properties oflight affect 
photosynthesis by providing the energy that drives carbon assimilation as well as by exerting 
control over physiology, structure and morphology of plants. Irradiance, expressed as energy 
flux, W m-2, or photon irradiance, jlmol m-2 S-I, determines the rate at which energy is being 
delivered to the photosynthetic reaction centers. Spectral quality, the wavelength composition 
of light, is important because photons differ in their probability of being absorbed by the light 
harvesting complex and hence their ability to drive carbon assimilation. Also the various light 
receptors for light-mediated regulation of plant form and physiology have characteristic 
absorption spectra and hence photons differ in their effectiveness for eliciting responses. 
Duration is important because both carbon assimilation and regulation are affected by the total 
energy or integrated irradiance delivered during a given period. Many processes associated with 
photosynthesis are time-dependent, increasing or decreasing with duration. Timing is important 
because the effectiveness of light in the regulation of plant processes varies with the phase of the 
diurnal cycle as determined by the plant's time-measuring mechanisms. 

Physiolo~ically Important Measures ofLi~ht 

Photosynthetic photon flux or PPF (ex. jlmol m-2 S-I), a combination ofirradiance and spectral 
quality, is a measure of the photosynthetically active photon irradiance (PAR or 
photosynthetically active radiation defined as the irradiance between the wavelengths of 400 and 
700 nm). PPF is the maximum energy available and only a small proportion of the photons 
actually are used to assimilate carbon. 

Time course of diurnal P P F and integrated diurnal irradiance, combinations of irradiance and 
duration, have important effects on photosynthetic carbon metabolism and its regulation. Of 
particular importance is the rapidity with which the light begins. Maximum irradiance level and 
the duration of high irradiance are important aspects of the time course of diurnal PPF, 
potentially affecting the degree of photo inhibition or photoprotection, both of which can lower 
the efficiency of light use for photosynthesis. It is important that these aspects of irradiance 
generally be similar to those under which the plant developed. 

Daytime spectral quality and end of day spectral quality are a combination of quality and 
timing. Not only does light drive photosynthesis but irradiance that extends beyond the range of 
400 to 700 nm affects plant morphology, physiology, leaf display and chloroplast orientation. 
Properties of light that affect growth and morphology of the plant, in tum, can affect 
photosynthesis. Photosynthesis generates a positive feedback system in which photoassimilation 

3 



contribute to further growth and so on. The compound interest aspect of the production and 
growth of leaves obviously is affected by plant properties such as leaf area and thickness, which 
are regulated by light. 

Photoperiod, the duration and timing of the irradiance, has marked effects on plant physiology 
and morphology, including carbon allocation, root to shoot ratio and reproduction. A 
combination of duration and irradiance comprise the integrated diurnal light energy that 
determines both the total daily assimilation of carbon but also affects morphology and 
physiology of leaves. 

The four properties of light, alone and in combination, are important to consider in the design 
and evaluation of performance of plant lighting systems. Responses to the various aspects of 
light are conditioned by adaptation, the genetically determined range of possible responses. For 
example, plants that are adapted to growing in the SlID will have a certain maximum 
photosynthetic capacity which will be considerably higher than that of a shade plant. On the 
other hand, plants adapted to grow in shade will be able to survive at a lower photosynthesis rate. 
Within the range of the adaptive possibilities, plants undergo acclimation to actual conditions. 

SPECTRAL QUALITY 

Light Ouality Affects Photochemical Reactions 
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Fig. 1. Absorption, reflection and transmission of light by a typical soybean leaf. IIIo 
refers to the radiation absorbed, transmitted or reflected relative to incident radiation at 
the same wavelength. From Kasperbauer, 1987. 
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The types, amounts and structural configuration of the photosynthetic pigments present in the 
photo systems, along with chloroplast orientation, determine the extent to which the various 
photons are absorbed (Figure I). The two major absorption peaks are related to the presence of 
chlorophylls and carotenoids arranged in photosystem antenna complexes and reaction centers. 
The general correspondence between the absorption and action spectra indicate that the photons 
that are absorbed are used with generally similar efficiency. Plants adapted to higher light 
generally have the capacity to develop antenna complexes capable of absorbing these higher 
irradiances efficiently and, within the range of possibilities, the leaves will acclimate to a 
specific irradiance range by developing complexes with a certain capacity. Examination of the 
quantum yield of photons reveals that the photosynthetic efficiency of photons is generally 
similar between 400 and 680 nm, with a rapid falloff above the latter wavelength (Figure 2). 
Photosynthesis using light absorbed at wavelengths between the chlorophyll absorption peaks 
has a slightly lower efficiency . 
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Fig. 2 Comparison of action spectrum and quantum yield for photosynthesis with the 
chloroplast absorption spectrum. Quantum yield of photosynthesis is the moles of carbon 
fixed per mole of photons absorbed. From Taiz and Zeiger, 1991. 

The energy content of the region of PAR determines the availability of energy for driving 
photosynthesis while that in the band above 650 is particularly important in photomophogenic 
processes mediated by phytochromes. Quantum yield of photosynthesis under a given set of 
conditions depends on absorption of photons by pigments of the antenna complexes, use of the 
excitation energy transferred from the molecules of the antenna complex to drive photochemistry 
in the reaction centers, and use of this energy in carbon assimilation. It is important that there be 
a close match between the amount of light absorbed and the amount actually used to drive 
photosynthetic carbon assimilation. Environmental factors may result in dissipation of absorbed 
energy by various processes that result in a decrease in quantum yield (Krause and Weis, 1991; 
Demmig-Adams and Adams 1992; Ruban et al., 1993). 

5 



Li~ht Quality Affects Plant Structure, MOI:pholo~y and Physiolo~y 

Light quality affects morphology, biochemistry and physiology of plants through its action on 
phytochromes and other pigments associated with light-mediated regulation of processes (Lopez
Juez et al., 1990). Examples of physiological parameters that affect photosynthesis are shown in 
Table 1. 

TABLE 1 Effect of Light Quality on Physiological Parameters for Leaves of Wild Type and 
Mutant Cucumber. Parameters shown for wild type and long hypocotyl mutant after 20 days in 
daily photoperiods of 14 h white fluorescent with ( + FR) or without (-FR) 20 min of far red light 
at the end of the day. From Lopez-Juez et aI., 1990. 

Parameter 
(units) 

Chlorophyll content 
(mg g-I fr wt) 

Chlorophyll content 
(j.tg cm-2) 

Chlorophyll alb ratio 

Total carotenoid 
(mg g.1 fr wt) 

Soluble protein 
(mg g.1 fr wt) 

Photosynthesis rate 
(mg CO2 m-2 S-I) 

(j.tg CO2 mg Chl-I S-I) 

-FR 

2.16 

43.3 

2.7 

0.28 

9.3 

0.29 
0.66 

Wild type 

+FR 

2.07 

36.3 

2.6 

0.27 

7.6 

0.18 
0.48 

-FR 

1.63 

21.1 

2.6 

0.22 

7.4 

0.06 
0.26 

lh mutant 

+FR 

1.69 

22.7 

2.5 

0.21 

7.2 

0.08 
0.36 

The far red light results in less chlorophyll per area and a lower photosynthesis rate per area, 
effects that can be explained by the fact that far red light given at the end of the day results in 
larger but thinner leaves. These leaves also seem to have a somewhat lower efficiency of 
photosynthesis per unit of chlorophyll. The fact that leaf morphology and physiology can be 
adjusted by a short period of light that has a specific spectral quality under come conditions may 
offer an efficient alternative to exposing plants to light with an energy-expensive spectral balance 
throughout a whole day. 

DIURNAL TIME COURSE QF IRRADIANCE 

In the Field Irradiance Chan~es Gradually Throuwout the Day 

Irradiance is a major factor influencing photosynthesis rate. The amount of sunlight striking a 
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unit area of the earth at any time in the course of a day is a direct function of the sine of the angle 
that the sun makes with the earth's surface. On a clear day, irradiance level on a horizontal 
surface generally follows the sine of the sun's angle with earth's surface (Figure 3). Even when 
there are clouds irradiance gradually increases and decreases over the course of a 
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Fig. 3. Time courses ofirradiance during JUly. A. Clear day. B. Partly cloudy day. C. 
Partly sunny day. 

day, The light available to leaves for photosynthesis depends both on the time course of diurnal 
irradiance and on factors, such as leaf orientation, that affect the interception of the incident 
light. Evolution of photosynthesizing organisms under cyclic diurnal irradiance has equipped 
plants to regulate the photosynthetic process in ways that allow carbon to be assimilated 
efficiently over the wide range of diurnal cycle irradiance. A particularly important aspect of 
this diurnal time course is the fact that irradiance begins slowly, generally matching the time 
constants of processes related to photosynthesis. For instance stomatal opening and induction of 
photosynthetic carbon assimilation by the Calvin cycle generally have time constants on the 
order of minutes. Induction of photosynthesis involves building the concentration of metabolite 
pools and enzyme activities associated with photosynthetic carbon assimilation. Beginning a 
photoperiod with rapid, practically instantaneous irradiance can lead to light and water stress 
(Geiger et ai. 1994). 

Because plants have become adapted to gradually changing daily irradiance, it is advantageous 
to study regulation of photosynthesis and carbon metabolism in the context of the diurnal light 
cycle. In particular, timing aspects of carbon assimilation regulation can be analyzed more 
effectively because the gradual changes in irradiance allow us to observe the step by step 
progress of the daily acclimation process. A number of researchers used this approach to 
elucidate mechanisms involved in the regulation of photosynthesis in nature (references in 
Geiger and Servaites, 1994a). Recently our laboratory has undertaken as series of studies of the 
regulation of photosynthesis (Geiger et aI., 1991, Servaites et aI, 1989a, 1989b, 1991) with the 
help of an apparatus that simulates the gradually changing irradiance of a natural diurnal light 
regime (Figure 4). 
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Fig. 4. Apparatus for regulating irradiance to simulate the irradiance under a natural light 
regime. The light level is sensed and converted to digital input (A-D CVTR) for 
processing by a computer. A signal is sent to a controller (ADC-CTR) which then directs 
the motor to transport the neutral-density film to produce the required irradiance. From 
Geiger et aI., 1991. 

Physiological Aspects of Gradually Changing Diurnal Irradiance 

To keep pace with changing PPF, flux through the carbon assimilation cycle changes over a wide 
range during the course of a single day. Unless prevented by some overriding factor, diurnal 
regulation enables the photosynthesis rate to match closely the capture and use of solar energy 
by the light reactions. In leaves of C3 plants, the Calvin-cycle acclimates to the constantly 
changing irradiance of the diurnal light cycle by a combination of light-mediated changes in the 
activation state of phosphoribulkinase (PRK), ribulosbisphosphate carboxylase oxygenase 
(Rubisco) and glyceraldehyde 3-phosphate dehydrogenase (Ga13PDH), coarse control, and self
regulating mechanisms involving the levels of ribulose bisphosphate (RuBP) and 
phosphoglyceric acid (PGA), metabolites associated with these enzymes, fine control. The 
activation states of the various light regulated enzymes of the Calvin cycle appear to change 
separately and at different rates in response to light (Figure 5; Geiger and Servaites, 1994a). In 
all cases the time constant leads to changes over a span of a number of minutes. To balance flux 
throughout the Calvin cycle under these conditions requires additional control based on emergent 
properties of the system of control metabolites interacting with a series of responsive enzymes 
(Figure 6; Geiger and Servaites, 1994b). The resulting self-regulation involves 
interaction of metabolites not only with a single enzyme but also with other enzymes in the 
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Fig. 5. Time courses of photon irradiance, net carbon exchange (NCE) rate, and enzyme 
activation state during a simulated natural day period. A. Photosynthesis rate (e), photon 
irradiance (---) maximal photon irradiance was 800 ,umol m-2 S-I, B. initial Rubisco 
activity ce) and total Rubisco activity CO). C.-F. activities of other Calvin cycle 
enzymes. From Servaites et aI., 1991. 

pathway. The increasing levels of complexity in regulation are needed so carbon assimilation 
can be matched closely with the rate of ATP and NADPH synthesis by the light reactions during 
the diurnal cycle. As a consequence, the light-activated Calvin cycle enzymes and their 
associated metabolites such as RuBP and PGA show a characteristic diurnal time course in 
response to the diurnal light regime, reflecting their role in regulation of the Calvin cycle (Geiger 
eta!., 1991, Servaitesetal, 1989a, 1989b, 1991). 

9 



180 

o 150 

140 
< ""'" c CIl 
a... I 120 
$... E 
o 

"0 100 

• E 
.3 80 

a... 50 
a:l 
:l 
0:: 40 

20 

1 2 3 4 5 5 7 8 9 10 11 12 13 14 

Time (hour) 

Fig. 6. Time courses ofRuBP and PGA levels in a sugar beet leaf during a 14-h light 
regime that simulates a natural day. From Servaites et al., 1989a 

Metabolic Flexibility 

The result of these two forms of regulation is a condition that can be termed metabolic flexibility 
which enables the plant to achieve a particular metabolic state in a number of different ways. 
The concerted action of a number of parameters bring to bear various control processes that can 
achieve a stable condition, homeostasis, by a number of different c~mbinations. Depending on 
the starting conditions, adjustment may be made by anyone of a number of combinations of 
enzyme levels, enzyme activation states and metabolite levels. The response of photosynthesis 
to diurnal irradiance patterns provides an example of metabolic flexibility and of the various 
factors that need to be considered in programming a diurnal time course ofPPF. In such 
situations the 'memory' of how a stable state was reached affects future regulatory responses. 

Consequences of Rapidly Initiated or Gradually Changing Irradiance 

Depending upon initial conditions and the path taken to reach stability, different regulatory 
elements may assume different degrees of importance. This metabolic flexibility is a result of 
probabilistic behavior during regulation, in which the path taken to reach stability cannot be 
described by a unique mathematical solution. The general pattern of response will be 
conditioned by a number of factors, such as the immediate past history of the plant. This point is 
well illustrated by observing the response of carbon assimilation in leaves of a sugar beet plant to 
two different light regimes on successive days. Depending upon how fast illumination reached a 
maximum at the beginning of the day, different combinations of activation states and associated 
levels of metabolites were observed for the three en'Z}'Illes of the assimilatory segment 
(Servaites et aI., 1991; Geiger et aI., 1991). Although the leaf maintained similar maximal 
midday photosynthesis rates under the different light regimes (Figure 7), considerable 
differences in the degree of Rubisco and PRK activation (Figure 8) and the levels of RuBP and 
PGA (Figure 9) were observed. Under the gradually increasing light of a diurnal light regime, 

10 



........ 24 
7 ...:- 22 

'0 I 20 
EN(/) 18 

A. 
800 

600 
........ -I 

Q) IE 16 
'0 14 
E '0 12 
::l E 10 

"0 ::l 8 
'-'-'J-'....AJ-,,<,,/'-"""t' 400 N (/) 

I 
Q) '-' 6 
>: Q) 

~ a; ~ 
200 

() P::: 
......... (/) 0 tr-i...,-t-+-+-I--+--t--t-+-+-t--li-! 0 
>. 'Uj 24 
() Q) 22 
§ :5 20 
() I:: 18 

;;: ~ 16 
[;j B 14 
,... 0 12 
§ 5: 10 
~ s... 8 
ll! 0 6 
:J 4 

G 2 

,. 
",,- --- ... 800 

'. 
'. 

'. 600 

400 

200 

O .. ~~~~~~~~~~~ ... O 
o 1 2 .3 4 5 6 7 8 9 10 11 121.3 14 

Time (h) 

E 
'0 
E 
::l 
'-' 

Fig. 7. Time course of photon irradiance, NCE rate and apparent quantum yield 
for sugar beet leaves. Data under (A.) rapidly initiated or (B.) gradually changing 
irradiance. NCE (0, e), photon irradiance (- - - -) and apparent quantum 
efficiency (-------). Data from Geiger et aI., 1991. 

the midday level of Rubis co activation state was nearly 100% and the RuBP level was about 
twice Rubisco binding site level. By contrast, when light increased to a maximum rapidly, as 
often occurs under growth room conditions, the midday level of Rubis co activation state was 
maintained at only 60% throughout the day, while the RuBP level was nearly twice that observed 
in the same leaves under gradually increasing light. Regulation by light-mediated enzyme 
activation was favored under gradually increasing irradiance while metabolite-mediated 
mechanisms were relatively more important when irradiance increased rapidly. The different 
forms of regulation achieved similar photosynthesis rates through different combinations of 
activation states and metabolite levels, an expression of the metabolic flexibility of 
photosynthesis. As a consequence of the physiological state resulting from metabolic flexibility 
in regulatory responses, plants may respond differently to stress. The response of photosynthesis 
to application of glyphosate depends on whether the day began with rapidly initiated irradiance 
or under gradually changing irradiance (Figure 10). When irradiance was begun rapidly at the 
start of the day, RuBP level was high, Rubisco activation state was only about 70% (Figure 10 
A-C). Under these conditions, inhibition of photosynthesis does not occur until about 4 h after 
glyphosate is applied, when RuBP level has fallen to a point where its level begins to be a 
significant factor determining photosynthesis rate (Servaites et aI., 1987). In contrast, under 
gradually changing diurnal irradiance (Figure 10 D-F), Rubisco activation state is full, RuBP is 
lower and is a significant factor regulating photosynthesis rate. In this case photosynthesis rate 
begins to decrease along with RuBP leave almost immediately after glyphosate is applied 
(Figure D-F). 
Shieh et aI., 1991). The physiological state clearly affects the response of photosynthesis to the 
imposed stress of the inhibition of the shikimate pathway by glyphosate. 
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A recent study of carbon allocation throughout the day-night cycle revealed that allocation of 
carbon to the synthesis of sucrose is regulated by an endogenous signal that is adapted to the 
usual time course of diurnal irradiance (Geiger and Shieh 1994). When the photoperiod begins 
with rapid onset of high light carbon allocation is changed markedly. Under these conditions, 
sucrose is synthesized from newly fixed carbon by two biochemical pathways and no starch is 
produced for several hours. Similarly, if irradiance remains high at the end of the day starch 
synthesis stops and sucrose synthesis and export nearly double. Clearly, carbon metabolism is 
changed by departure from the usual daily time course of irradiance. As a result of metabolic 
flexibility the plant acclimates to the step time course of irradiance often used in growth under 
artificial light but the metabolic state of the plants are changed. 

100 350 120 450 
90 400 300 
80 100 

350 
70 250 

80 300 
60 200 250 
50 60 ....... ....... 

150 N 200 N 

';' 40 I I ....... S e ., 40 150 '" 30 I 
I 100 (II "0 "0 e N s S 20 I 100 
"0 50 S -5 20 -5 
s 10 "0 I::: 

50 
I::: 

-5 100 1350 e .2 a a .2 
-5 .... .... 

:>.. os 01 .... 90 s.. B. 400 
s.. 

:~ 300 >. .... .... .... ~ 100 r::: .... 80 . s: " Cl Cl 350 0 
< 250 

:;:l I::: r::: 
70 Cl 0 0 

0 < u 80 300 u 
Cl 

60 :.: '" c.. < 
:0 200 Il: III 250 C!l 
:I 50 a- ::I 60 a-
Il: ~ 

40 150 200 

30 100 
40 150 

20 100 
50 20 

10 50 

0 a 0 0 o 1 234567891011121314 o 1 2 3 4 5 6 7 8 91011121314 
Time (hour) Time (hour) 

Fig. 8. (left) Rubisco and PRK activities in sugar beet leaves. Data for plants under (A.) 
rapidly initiated or (B.) gradually changing irradiance. (0,_) PRK activity; total (A,"') or 
initial (-, c) Rubisco activity. 

Fig. 9. (right) Levels of RuBP and PGA in sugar beet leaves from plants shown in Figure 
8. (A,"') PGA levels, (_,c) RuBP levels. From Geiger et al., 1991. 

12 



--I 15 
III 

14 (II 
I 

E 13 

"0 12 

E 11 

2: 10 

Ql 
9 

.... 8 ., 
7 0: 

III 6 
'iii 5 Ql 
..c: 4 

-= 3 >. 
CD 2 0 .... 1 0 

..c: 0 
Q. 

60 
>. .... 
;: 50 :::: 
0_--
<I ., 40 
ON 
01 
(I) 

E 30 :0 
:l "0 0: 

~ 
E 20 
2: .... 

:5 10 

128 
110 

__ 100 

')I 90 
E 80 

"0 70 
E 2: 60 

Q. 50 
cg 40 
0: 30 

20 
10 

. . : • • 

• 

• 

• • 0 ••••• • • • 

; . 
• • 

•• •• 

A. 

B. 

o ...,. . ...I.......J'-'-'--'-..L-I.---'-...I.......JL.......L..-'--'--'-' 
o 1 234 5 6 7 8 91011121314 

Time (hour) 

.... 
I 

N
IIl 12 

I 

E 
u 10 

"0 
E 8 .:; 
" .... 6 .. e:: 
(I) 

4 0; 
Ql 

..c: 
-= 2 .... ., 
.3 
0 0 .c: 

c.. 

60 

10 

N~ 

'E 80 

"0 70 
E 
.:; 60 
c 
.250 
'i 
!: 40 
c 
~ 30 c 
o 
u 20 
c. 
~ 10 
e:: 

.OO;'£' "0 OW ~ ~i t" ~ 
." GLP \ , ... 

.;, . ~ 
9·' ... ) 
;.' d tilt., 

,~~ 'o~\ 
I 6:P:fb .0\ 
~ 0 .;, 

I ~ 10° , 
B. 

-. .. . 
• 

O~~~~---'-...I.......JL.......L..-'-~W'-,,_ 

o 1 2 3 4 5 6 7 8 91011121314 

Time (hour) 

800 j .... 

" N 

700 1 E 

600 Q 

.3 0 
500 .c: 

0. 

400 "0 s 
300 .=; 

" 200 CJ 
Q 
II 

100 ;; .. .. 
0 .!:: 

Fig. 10 Time courses of NCE, initial Rubisco activity and RuBP following application of 
glyphosate to leaves under contrasting light regimes. Data for day of application C.), for 
second day Co), and for control plants (- - • - -). Vertical dashed line and GLP mark the 
time of application of glyphosate. A.-C.: Leaf under rapidly initiated irradiance. From 
Servaites et al., 1987. D.-F.: Leaf under gradually changing irradiance. From Shieh et 
aI., 1991. 

RESPONSE TO DIURNAL IRRADIANCE LEVEL 

Irradiance Level Affects Photosynthetic Ouantum Yield 

A measure of successful diurnal regulation of photosynthesis is the ability of the plant to lessen 
the impact of environmental stresses and so use what light is available efficiently. The result is a 
general correspondence between carbon flux through the assimilatory segment of the cycle and 
the course of diurnal irradiance. Recently we conducted a series of studies that dealt with diurnal 
acclimation of photosynthesis, both in the field and in the laboratory under a light regime that 
simulated a clear day (Servaites et al., 1989a, 1989b, 1991). Photosynthetic performance was 
assessed by the apparent quantum yield (~j), that is, the moles of carbon fixed per mole of 
incident photons based upon NCE rate and PPF. 
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Fig. 11. NCE rate of sugar beet leaves as a function ofPPF. A. and B. field-grown 
plants, on a clear summer day. C. Laboratory-grown plant in moderate light. Data for 
plants under increasing (e) or decreasing (0) photon irradiance. From Servaites and 
Geiger, 1994. 

Experiments with field-grown sugar beet plants that were acclimated to growing outdoors 
showed differences in the maximum diurnal NCE rate attained under the high PPF of summer 
sunlight (Servaites and Geiger, 1994). In some circumstances, NCE rate increased in nearly 
direct proportion to PPF throughout the day while in other cases the rates stopped increasing or 
even decreased with increasing PPF near midday, resulting in a second decrease in ~i. In 
general, ~ i decreased to a new level when irradiance reached about a quarter that of full sunlight 
(Figures 7, 11), both under moderate light in the laboratory (Figure IIC) and in the field 
(Figures. I1A,B). More often than not, ~i decreased again under the midday summer sun when 
irradiance exceeded about half the level offull sunlight (Figure lIB). The initial decreases in ~i 
at low to moderate PPF likely resulted from photoprotective mechanisms while the midday 
decrease likely was caused by inactivation or turnover of photosystem II or by photo inhibition 
(Krause and Weis, 1991; Demmig-Adams and Adams, 1992; Ruban et al., 1993). High 
temperatures, high leaf-to-air water vapor pressure differences or other environmental factors 
that show diurnal changes and that can result in stress may have a part in inducing the second 
change in ~ I (references in Bunce 1990). A recent review (Demmig-Adams and Adams, 1992) 
provides a model representing the responses of the photosynthetic apparatus to increasing levels 
of PPF. In brief, at first the increase in irradiance can bring about photoprotective responses. If 
irradiance continues to increase under a certain degree of stress to the photosynthetic apparatus 
responses may occur that result in greater or lesser damage. It seems reasonable to conclude that 
the two phases of decrease in ~ j correspond generally to these stages of severity in the response 
to increasing irradiance. 

Inte~rated Daily Light Ener~ Is Important in Determining Leaf Adaptation to Light 

Leaf anatomy and NCE rate per unit dry wt can be modified during leaf expansion to reflect the 
predominant light conditions (Jurik et al., 1979). Leaf structural and NCE per unit dry wt were 
similar under environments where the integrated daily light energy was the same even though 
peak PPF was different (Table 2, Chabot et al., 1979). High total quanta, even at relatively low 
peak irradiance, produced sun type leaves (Chabot et al. 1979). Total daily incident quanta is 
a key factor detennining leaf thickness, leaf weight per area, and mesophyU cell volume and 
surface per leaf area. Photosynthetic capacity, the light saturated rate ofNCE measured at 25°C 
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and 34 Pa external CO2, could be modified by changes in environmental conditions after leaves 
had become net exporters of carbon but prior to full expansion (Bunce 1991). Up to a point, 
photosynthetic capacity increased with leaf mass per area (Figure 12). Photosynthetic capacity is 
increased by total daily light energy incident on those leaves but not by that incident on other 
leaves. The net available photoassimilate (supply minus use), increases the leaf mass per area 
(Figure 13) and so is a key factor in acclimation of leaves to light. 

The material presented in this paper present data that suggest some criteria for evaluating growth 
chamber and greenhouse lighting. Effective lighting should produce plants that perform 
according to the goals of the project. For example, for physiological studies the plants probably 
should exhibit morphology and physiology similar to that found in field-grown plants. For other 
projects the criteria will obviously will be set according to the reason for raising the plants. 

TABLE 2 NCE and Leaf Anatomy of Fragaria Virbiniana Under Conditions of Nearly 
the Same Constant Peak PPF, But Variable Total PPF. 
Values in the same row followed by the same letter are not significantly different. Data 
from Chabot et aI., 1979. 

Light Regime* 

High PPF Duration (h) 3.7 7.6 15.0 6.3 15.0 

High PPF 305 305 302 363 371 
(,umol m-2 S-I) 

Integrated PPF 6045 9.88 16.3 10.1 20 
(mol m-2 d-I) 

Leaf Traits 

Maximum NCE 
(,umol m-2 S-I) 23.6a 28.2b 29.6b 20.8a 31.6b 

(,umol g-2 S-I) 0.50a 0.58a 0.51 a OAr OA7a 

Thickness (,urn) 113 126 151 138 179 

SLW (mg m-2) 48.6a 49.9a 59.5b 44Aa 69.0c 

Mesoph Cell Vol 3.9 x 104 4.8 X 104 6.5 X 104 4.9 X 104 8.0 X 104 

(mm3 m-2) 

Ames / A IO.3a Il.7a I5.3b I1.4a I6.0b 

*The treatments with less than I5h of high PPF were supplemented with a low PPF of 59 ,umol 
m-2s- 1 (0.21 mol m-2hr-l

) to provide a 15h photoperiod. 
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REGULATION OF ASSIMILATE PARTITIONING BY DAYLENGTH AND 
SPECTRAL QUALITY 

Steve J. Britz 

USDA-Climate Stress Laboratory, Beltsville MD 20705-2350, USA 

INTRODUCTION 

Photosynthesis is the process by which plants utilize light energy to assimilate and transform 
carbon dioxide into products that support growth and development. The preceding review 
provides an excellent summary of photosynthetic mechanisms and diurnal patterns of carbon 
metabolism with emphasis on the importance of gradual changes in photosynthetically-active 
radiation at dawn and dusk (Geiger, this volume). In addition to these direct effects ofirradiance, 
there are indirect effects of light period duration and spectral quality on carbohydrate 
metabolism and assimilate partitioning. Both daylength and spectral quality trigger 
developmental phenomena such as flowering (e.g., photoperiodism; Deitzer, this volume) and 
shade avoidance responses (pausch et al., 1991), but their effects on partitioning of 
photoassimilates in leaves are less well known. Moreover, the adaptive significance to the plants 
of such effects is sometimes not clear. 

DAYLENGTH 

The light period normally occupies only part of the 24 h cycle, but photosynthesis during the 
light must support the carbon requirements of the plant during the dark as well. Thus, 
photosynthetic productivity frequently exceeds the capacity of the plant to transport and/or 
utilize the products of photosynthesis during the light period alone. Excess capacity is often 
stored in leaves or other tissues as polymers of glucose or other sugars (e.g., starch, sucrose, 
fructans). Temporary storage ofphotosynthate as large molecular weight compounds provides 
immediate benefits for photosynthesis, since it releases phosphate that would otherwise be 
sequestered in phosphorylated sugars (potentially inhibiting photosynthesis). 

However, carbohydrate storage serves another important purpose. Many plants accumulate large 
amounts of starch or other carbohydrates in photosynthetic tissues during the light and then 
breakdown and utilize this material in the dark. This temporal redistribution of photosynthetic 
products allows plants to support growth and respiration during long dark periods. Mutants 
unable to accumulate starch are disadvantaged when grown under light-dark cycles as compared 
to continuous light (Caspar et aI., 1985). 

Early experiments conducted in greenhouses indicated that plants .accumulated a greater 
proportion ofphotosynthate as starch under short day conditions (Challa, 1976). Subsequent 
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experiments were largely performed in controlled environment chambers and documented that 
similar responses to daylength could be observed in a wide range of species and that plants could 
adapt to sudden changes in daylength, sometimes within 24 h of the switch (Britz, 1990a). Note 
that photosynthate partitioning into starch was approximately halved when soybean plants were 
transferred from a 11.5 h daylength into a 16 h daylength (Table 1; Britz, unpublished data). 
Partitioning under a 7 h daylength, however, was similar to that under 11.5 h, indicating the 
transition between short and long-day response was between 11.5 and 16 h. In several well
documented cases, daylength regulation of assimilate partition was demonstrated to result from 
timing of dark period duration involving circadian rhythms initiated at the transition between 
light and dark periods (Britz et aI., 1987). Detection of the light-dark transition apparently was 
perceived by non-photosynthetic photoreceptors capable of suppressing rhythms above certain 
low irradiances (Britz, 1986; Britz, 1991). 

TABLE 1 Effect of Day length on Carbohydrate Allocation in Soybean 

Daylength Treatment* Leaf Number ** Starch Accumulation 
(percent of photosynthesis) * * * 

11.5 h --+ 7h TF3 34.7 
TF4 36.3 

11.5 h --+ 11.5h TF3 35.3 
TF4 32.9 

11.5 h --+ 16h TF3 18.7 
TF4 19.7 

* Plants were grown (Chatterton and Silvius, 1981) for 24 days at a daylength of 11.5 h (12.5 h 
dark period) and shifted for 4 days to the indicated daylength prior to measurement. ** Third and 
fourth trifoliolate leaves (TF3 and TF4, respectively). *** Rates of starch accumulation were 
determined under growth conditions between 1 and 6 h after lights-on and referenced to rates of 
intact leaf net photosynthesis expressed as carbohydrate assimilation (Britz, 1990b). 

In spite of the early greenhouse work, some researchers (e.g., Geiger et aI., 1985) speculated that 
the daylength response was peculiar to the complex lighting manipulations used in controlled 
environments (e.g., Britz et aI., 1985). However, an extensive series of greenhouse experiments 
conducted with natural daylight at 12 intervals during a growing season showed that the 
proportion of assimilate partitioned into starch (TF4, 4th trifoliolate) increased steadily under 
standard measurement conditions as prior daylength shortened between the summer solstice and 
the autumnal equinox (Britz, 1990b). About one-third of photosynthate was stored as starch at 
midsummer, but this fraction increased to 80% in early autumn. Temperature in the greenhouse 
was controlled with a heat pump, so the effect of this variable was minimized. Growth intervals 
were adjusted so that TF4 of comparable developmental status (i.e., plastochron), but differing in 
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daylength history, were obtained for each harvest. In fact, photosynthetic rates ofTF4 measured 
under standard conditions declined only by about 10% at later harvests in the fall. 

Increased partitioning into leaf starch was observed under short days at the end of the growing 
season, in spite of the fact that daily integrals of photosynthetically-active radiation were 
reduced by 50% and that plants were filling pods at the axil ofTF4. These results suggest that 
daylength effects on assimilate partitioning within a source leaf may take precedence over the 
demand of nearby sinks. It may also explain why soybean seed development is sometimes found 
to be sink limited, while leaves may at the same time contain high levels of starch (Streeter and 
Jeffers, 1979). Clearly, regulation of assimilate partitioning by factors operating at the level of 
the leaf can be an important component of overall plant productivity. 

SPECTRAL QUALITY 

It has been known for some time that spectral quality affects plant tissue composition. In 
particular, carbohydrate levels are higher, while protein and amino acids are lower, in plants 
raised under red-biased as compared to blue-biased spectra (e.g., Warrington and Mitchell, 
1976). It is important to determine ifphotosynthate partitioning contributes to morphological and 
physiological adaptation to altered spectral quality (e.g., canopy shade). A crucial question is 
whether spectral quality affects photosynthate partitioning directly at the level of source leaf 
metabolism or indirectly as a result of photo morphogenetic effects on the strength of developing 
sinks. For example, high starch content in the first leaf of cucumber was shown to correlate well 
with the growth of the developing third leaf leaf as controlled by blue light and/or ultraviolet-B 
radiation (Britz and Adamse, 1994). It seems likely that starch content in the first leafwas an 
indicator of sink demand. 

Soybeans raised under relatively high photosynthetically-active radiation from blue-deficient 
low pressure sodium (LPS) lamps manifested many of the charact~ristics of shade plants (Britz 
and Sager, 1990). The leaves contained baseline (Le., end-of-night) starch levels three fold 
higher than plants raised under broad spectrum fluorescent light. Moreover, 35% more 
photosynthate was partitioned into starch and sugar during the first half of the light period, 
apparently causing a decline in export from 52 to 37% ofphotosynthate (Table 2; Britz and 
Sager, 1990). Some of the retained carbon may have been used to support leaf growth at the 
expense of root growth (Table 2). High ratios of total leaf area to total dry matter compensated 
reduced photosynthesis on an area basis and maintained similar total Relative Growth Rates 
under the two different spectral quality conditions (Table 2). Note that net photosynthesis (total 
leafbasis!) was equal for first trifoliolate leaves measured under growth conditions for the two 
different light qualities even though the area ofleaves from blue-deficient conditions was much 
greater. These data confirm the importance of generating high leaf area and suggest that changes 
in source leaf partitioning may be a form of resource rationing that maintains high 
photosynthesis under perceived shade conditions. 
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TABLE 2 Photoassimilation, Export and Growth Parameters in Soybean 

Broad Spectrum Blue-deficient Low 
Parameter Fluorescent Lamps Pressure Sodium Lamps 

First Trifoliolate Leaf* 
Leaf Area (dm2

) 

Net Photosynthesis (mg-C leaflh-l) 
Starch + Soluble Sugar Accumulation 
(percent of net photosynthesis) 
Export 
(percent of net photosynthesis) 

Relative Growth Rates** 
Total Cry Matter (g g-l dOl) 
Leaf Dry Matter (g g-l dOl) 
Stem Dry Matter (g g-l dOl) 
Root Dry Matter (g g-l dOl) 
Leaf Area (dm2 dm-2 dOl) 

Leaf Area Ratio (dm2 g-l) 
14 days 
18 days 

*Determined 16 days after planting. 
* *Determined 14 to 18 days after planting. 

0.559 b*** 
3.46 a 

34 

52 

0.226 ab 
0.195 b 
0.252 a 
0.253 a 
0.157 c 

2.09 a 
1.59 b 

0.656 a 
3.47 a 

46 

37 

0.218 b 
0.212 b 
0.230 ab 
0.208 b 
0.202 b 

2.19 a 
2.07 a 

***Values followed by different letters are significantly different at the 5% confidence level. 

More detailed experiments with younger soybean seedlings (8 to 10 days after planting) revealed 
significant reductions in the partitioning of 14C-Iabelled photosynthate to the roots of plants 
transferred from blue-sufficient to blue-deficient lighting (Verkleij and Britz, unpublished data). 
Alterations in translocation preceded discernible changes in the partitioning of growth to the root 
but were accompanied by only small changes in primary leaf assimilate accumulation, raising 
questions about the cause-and-effect relationship between leaf carbohydrate storage and growth 
patterns. Under these conditions, high levels ofleaf starch were shown to result from small and 
gradual increases in the proportion of photosynthate stored as starch during the light coupled 
with small reductions in the amount of starch broken down in the dark. 
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CONCLUSIONS 

The effects of daylength and spectral quality on assimilate partitioning and leaf carbohydrate 
content should be considered when conducting controlled environment experiments or 
comparing results between studies obtained under different lighting conditions. Changes in 
partitioning may indicate alterations to photo regulatory processes within the source leaf rather 
than disruptions in sink strength. Moreover, it may be possible to use photoregulatory responses 
of assimilate partitioning to probe mechanisms of growth and development involving 
translocation of carbon or adaptation to environmental factors such as elevated CO2, It may also 
be possible to steer assimilate partitioning for the benefit of controlled environment agriculture 
using energy-efficient manipUlations such as daylength extensions with dim irradiances, 
end-of-day alterations in light quality, or shifting plants between different spectral qualities as a 
part of phasic control of growth and development. Note that high starch levels measured on a 
one-time basis provide little information, since it is the proportion of photosynthate stored as 
starch that is meaningful. Large differences in starch content can result from small changes in 
partitioning integrated over several days. Rate information is requjred. 
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SPECTRAL COMPOSITION OF LIGHT AND 
GROWING OF PLANTS IN CONTROLLED ENVIRONMENTS 

Alexander A. Tikhomirov 

Institute of Biophysics, Krasnoyarsk, 660036, Russia 

The main conclusions of many investigations about general requirements of plants for spectral 
composition of PAR are based on phylogenetic aspects of plant growth (Kleshnin et aI., 1980; Geiger, 
1994; et al). We think that these aspects are not the main criteria in choosing the spectral composition 
required for growing plants in controlled conditions. Our approach to this problem is based on plant and 
crop reaction under long duration growth with specific spectra and intensity. Only in this way can we 
determine correctly the role of light characteristics for developing crops. 

Why does it happen? In this connection it will be useful to examine the curve of the action spectrum of 
photosynthesis. This classical curve is formed under controlled influence of light that involves av 3-5 
minutes irradiation with one specific spectral flux. The form of this curve is similar for green leaves of 
different species of plants. We've obtained different curves for spectral affectivity of green leaf 
photosynthesis (on the example of radish), when plants have had long duration adaptation (for some 
days) to lamps of different spectral composition and PAR intensity (Fig. 1, curves 1 and 2). The spectral 
of these lamps is shown in the Short Note by Prikupets and Tikhomirov in this publication. We feel the 
obtained differences have the following reasons. During short time intervals, only reactions of quick 
photoregulation are possible. These reactions affect only functional characteristics of the photosynthetic 
leaf system. In that time, structural changes do not occur and these reactions to light aren't observed. 
The classical action spectrum of photosynthesis (Fig. 1, solid line) shows the universal characteristics of 
green leaves of different plant species. Plants have the same types of green pigments (chlorophyll), 
photo systems, reaction centers, pathways of energy migration to reaction centers and so on (Tikhomirov 
et aI., 1987; 1991). 

o ~ __ ~ __ ~ __ ~ __ ~ __ -. __ ~ __ __ 
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Fig. 1. The relative spectral 
efficiency of photosynthesis of green 
leaves of radish plants grown for 15 
days under different PAR spectral 
lighting. Photosynthetic 
measurements for 400-500 mm were 
taken with plants grown under blue
light lamps, for 500-600nm under 
green light lamps, for 600-700nm 
under red-light lamps. 1) radiation 
intensity during growth of plants was 
50 W m·2 PAR (radiation intensity for 
unsaturated photosynthesis). 2) 
r~diation intensity growth of plants 
was 200 W m·2 PAR (radiation 
intensity for saturated photosynthesis) 
(Tikhomirov et al.. 1987;1991). Solid 
line is average value of relative 
spectral photosynthetic efficiency of 
green leaves according to McCree 
(1972), Inada (1976. 1977). 



Therefore, usage of the curve for action spectrum of photosynthesis is not correct in light regulation 
under long-term stationary regimes, since certain reactions to spectrum and intensity of PAR aren't taken 
into consideration. All spectral requirements obtained under short light influence tests have similar 
limitations. 

What should be done? It's necessary to be guided by data obtained under long-term influence of spectral 
and intensity characteristics on photosynthetic plant systems and even better on canopies of plants. 
These are the photosynthetic structures which ultimately form to produce the harvested yield. We've 
obtained some results which support this conclusion. These are some of the universal responses 
(Tikhomirov et aI., 1991): 

1) The time for maximum affectivity of photosynthesis of plant canopies appears earlier 
with red (600-700 run) and later may shift to shorter wave length regions of PAR. This shift 
depends on specific plant reaction to spectrum of PAR; 

2) The relative effectiveness of blue rays increases and green and red rays decreases with higher 
levels of irradiation (Fig. 2 and 3); 

3) Maximum photosynthesis of canopies is possible only under combinations of blue, green and 
red radiation. Any kind of combinations of two of these wavebands or with only one spectral 
region, always reduces productivity. 
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Fig. 2. The relative spectral efficiency of photosynthesis of cucumber leaves adapted to long 
duration growth with radiation of different energy and spectral composition. B = 400 - 500nm, 
G = 500 - 600nm, R = 600 - 700nm. a) 12 W m-2 (Ko, 1974)~ b) 24 W m-2 (Ko, 1982); c) 50 W 
m-2 (Tikhimirov et aI., 1991); d) 100 W m-2 (Tikhomirov et al., 1991). 
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Fig. 3. The photosynthetic rate of 
15d-old radish canopies with 
irradiance of differing spectral 
composition and intensities (B = 400-
500nm, G = 500-600nm, R = 600-
700nm). (Tikhomirov, et aI., 1991). 

It is not necessary to provide light conditions for maximum photosynthesis of every plant leaf but to 
provide light conditions for optimal photosynthesis of the plant canopy. As a general rule over long 
periods, photosynthesis systems grow old very quickly. The effect of leafage on photosynthic rate is 
shown in Figure 4 using cucumbers. 
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Fig. 4. The photosynthetic rate of cucumber per 
canopy area for PAR irradiances of 100 W m-2 

with 400-500nm (B), 500-600nm (G), or 600-
700nm (R) during canopy development 
(Tikhimirov et aI., 1991). 

Optimal photosynthesis of plant leaves involves a harmonious relationship between spectrum and the 
intensity of PAR. Thus, plants "work" to obtain the maximum photosynthetic efficiency (but the 
photosynthesis is not maximum for each leaf) (Tooming, 1984). 

There is a question. Is it necessary to prepare optimal light conditions for the photosynthesis of all 
leaves on the plant or not? What way is it determined? The correct' decision on spectral composition of 
light depends very much on certain morphological characteristics of plants. There is a dependance upon 
the distribution of fruits along a stem (Tikhomirov, 1990). For example, cucumber has equal 
distribution of fruits along the stem. There every leaf supplies assimilate to its fruit. In this connection 
cucumber leaves at all layers must be provided with optimal light conditions. This requires a large 
portion of green rays in PAR (about 40%). Red rays in PAR (about 40%) provide high level of 
photosynthesis of upper leaves. Green rays penetrate into middle and lower leaves of plants. Blue rays 
have regulatory function. but its part in PAR is not very big (about 20%) (Tikhomirov. 1989). 

We have another situation, where rruits of a plant concentrate in the upper part of the stem. Classical 
example is wheat. The ear of wheat is supplied with assimilates, primarily :rom the upper leaves. With 
this crop, PAR must have approximately 60-70% red rays (Tikhomirov. \990). We've obtained data on 
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specific reactions of plants for the spectral composition of PAR. It's particularly important during plant 
development processes. According to this point of view plants may be divided into two groups 
(Tikhomirov et aI., 1991): 

1) The first group is characterized with restricted growth and development processes at 
definite ontogenetic phases if the PAR spectrum and intensity are not optimized (i.e., 
cucumber, sunflower); 

2) The second group include plants capable of passing through all onto geneticS phases and 
producing a harvest irrespective of the PAR spectrum and intensity provided (for example: 
tomatoes, wheat). 

Wheat is capable of passing through all phases of ontogenesis regardless of any specific spectral 
irradiation. It's correct for PAR range of 100-600 W m-2 and possibly even higher. Tomatoes have more 
restricted PAR range in comparison with wheat. With a PAR of200 Wm-2 and higher, tomato 
productivity is lowered in red rays. PAR range for radish appeared to be more narrow. Even when red 
and green light is equal at a PAR of200 Wm-2,plants of radish perish. Cucumbers appeared to be the 
most greatly influenced by the spectrum of PAR. For example in red wavelengths with less than PAR of 
50 Wm-2, plants die. 

We shouldn't ignore these great differences in reaction of plants on spectrum and PAR intensity. All 
compromising decisions including introduction of universal spectrum of irradiation lead to partial loss of 
productivity . 

Equal-energetic spectrum ("white" light) or a spectrum similar to curve of the action spectrum of 
photosynthesis have been proposed for use as a universal spectra for plants growing under lamp lighting. 
The first might be chosen because of consideration of phylogenesis of plants, the second - because of 
research familiar to you (McCree, 1972; Inada, 1976). Either of these options could be accepted as a 
temporary compromise for initial research. 

I do not believe that we have to copy illumination of plants in natural conditions for use in controlled 
environment growing. For example there's no need to grow some species of plants under alternative 
light dark periods. Our research showed that productivity of some plants (radish, wheat) can be 
increased under continuous irradiation (Tikhomirov et aI., 1976; Lisovsky et aI., 1987). Also, we 
should not strictly aspire to duplicating morphophysiological characteristics of field grown plants. Thus, 
for example, we achieved a very large radish productivity when we sharply changed its 
photomorphogellesis (Tikhomirov et aI., 1976). This is true for increasing cucumber productivity too. 
However, if we accept this concept, we must know where and how we should deviate from natural 
conditions to increase productivity of plants grown in controlled environments. So I have the following 
suggestions: 

1) As a temporary measure the draft guideline distributed by the organizing committee might be 
recommended for usage for plants grown in controlled environments; 

2) Research work should be expanded to identify the spectrum of PAR radiation for each plant 
species which provides the maximum crop value. 

If these suggestions are taken into consideration, my colleagues from Russia and I are ready to discuss a 
program of research and take part in its conduct. 
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SHORT REpORT 

OPTIMIZATION OF LAMP SPECTRUM FOR VEGETABLE GROWTH· 

L. B. Prikupets and A. A. Tikhomirov 

Institute of Biophysics, Siberian Branch of 
Academy of Sciences of Russia, Krasnoyarsk, 660036, Russia 

An increase in the demand for and production of vegetables in the winter, mainly in northern and 
Siberian regions, inevitably leads to mass building of structures for growing plants under 
completely artificial conditions. It is required to create an industrialligh!ing technology whose 
main parameters (spectrum, irradiance, photoperiod) should be assigned carefully and should 
uniquely detennine, along with other important characteristics of the artificial climate, the 
productivity of the plant-production facility. 

The most widespread crops grown in our country under indoor conditions are cucumber and 
tomato plants, which account for more than 98% of the area of greenhouses. These plants are 
good prospects for growing completely under intense artificial lighting conditions 
(photocultures). Optimization of the main parameters of optical radiation when growing these 
plants is the most important task of achieving their profitable pro·duction. 

At present considerable experience has been gained in studying the dependence of productivity 
of cucumber and tomato communities on irradiation conditions. Fundamental studies of the 
Agrophysical Research Institute of the Russian Academy of Sciences, Timiryazev Institute of 
Plant Physiology of the Russian Academy of Sciences, Timiryazev Agricultural Academy, and 
other institutes create a good basis for a detailed study of the given problem. Commercial 
sources of radiation substantially differing in spectral characteristics in the region of 
photosynthetically active radiation (PAR) were used in the studies (Table 1). 

TABLE 1 Spectral Characteristics of Light Sources. 

Approximate ratio of radiant fluxes 
Light source in three PAR ranges, % 

400-500 nm 500-600 nm 600-700 nm 

Incandescent lamp 14 34 52 

DKsTlamp 35 31.5 33.5 

DRV750 lamp 25.5 46 28.5 

DRLF400 lamp 26 56 18 

DNaT400 lamp 7 56 37 

DRI2000-6 lamp 39 43 18 

One of the first studies of a cucumber variety "Klinskie" photoculture is reported in (Moshkov, 1966) and 
it is noted that the use of type DRL400 lamps with PAR irradiance 80-120 W/m2 produced good results. 

·Reprinted with permission of Allerton Press, Inc. New York, NY 'Lighting Engineering' 1 (2):62-67, 1993. 
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In experiments with cucumber variety "Dyadya Stepa" three types of lamps with a different 
spectrum were used: DRLF400, DRV750, and DR12000-6 (Sharupich, 1982). Unfortunately, 
each type was used in its "own" range of PAR, the boundaries of which were selected with 
consideration of the energy efficiency in the PAR region and unit power of the lamp. With 
irradiation of the plants by a spectrum with a small share of radiation in the red region 
(DRLF400) and with variation ofirradiance EpAR within 35-100 W/m2, the productivity of the 
community did not exceed 17 kglm2

• In experiments with DRV750 lamps (increased share of 
radiation in the red part) with an increase ofEpAR from 35 to 200 W/m2, maximum productivity 
increased to 23 kglm2

• Finally, for EpAR=300-400 W/m2 (DRI2000-6), productivity of the 
community increased to 30 kglm2

• The author (Sharupich, 1982) concluded that the range EpAR 
= 80-150 W/m2 is preferable for a cucumber culture, and an evaluation of the favorable 
spectrum is possible only at the qualitative level. 

Detailed studies of potential productivity of tomatoes under photo culture conditions were carried 
out by the author (Moshkov, 1966) and were continued by his successors. The main sources of 
radiation in the experiments were 300-W metallized incandescent lamps, the spectrum of these 
sources was most suitable for intense growing of tomatoes under artificial conditions. A tomato 
variety Pushkinskii yield, of about 22 kglm2 was obtained with EpAR of about 250-300 W/m2 

under conditions with water screens. 

In the next study (Ermakov, 1987), 1000-W halogen lamps (HLs) and 400-W high-pressure 
sodium lamps (HPSLs) were used and the conclusion about the special significance of the long
wave part of PAR for the vital activity of tomato plants was confirmed. 

It should be noted that the spectrum of type DKsTV6000 lamps having close to equi-energy in 
the PAR region, was used in photobiological studies of the Timiryazev Agricultural Academy 
(Leman, 1976), and also was quite effective for tomato photoculture. To develop well-founded 
requirements imposed on the spectrum when growing tomato and cucumber plants under intense 
photo culture conditions, it is necessary to conduct experiments with broad variation in the 
spectrum within the PAR. Such experiments were conducted by the Institute of Biophysics, 
Siberian Branch, Russian Academy of Sciences (lBF SO RAN) jointly with the All-Union 
Lighting Research and Development Institute (VNISI) in 1986-1989. 

Using the method of Tikhomirov, (1983) and a series of selective metal halide lamps (MHLs), 
the PAR region was divided into three spectral ranges: 400-500 nm ("blue"), 500-600 nm 
("green"), and 600-700 nm ("red"). The spectra of these lamps with filters are shown in Figure 
1. The required spectral distribution and level of irradiance were achieved by combining lamps 
in a multilamp lighting fixture. Cucumber variety "Moskovskii Teplichnyi" and tomato variety 
"Starfire" were grown in 1 m2 chambers with adjustable temperature and humidity characteristics 
until the final tomato crop was obtained. The environmental parameters (except the varied 
spectrum) were maintained at optimal levels: humidity 60-70% (cucumbers) and 60-70% 
(tomatoes), air temperature during irradiation 25 ± 1°C (cucumbers) and 28 ± 1°C (tomatoes), 
night temperature 20 ± 1°C (cucumbers) and 25 ± 1°C (tomatoes), photoperiod 14 hr 
(cucumbers) and 16 hr (tomatoes). 
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Fig. 1. Spectra of lamps and absorbance of filters utilized for irradiation of plants. 
Spectral emissions of lamps shown by vertical lines for a) blue mercury-gallium-indium 
lamps, b) green mercury-thallium lamps, c) red mercury-thallium lamps based on relative 
energy emission of the strongest waveband. Dashed vertical lines are the relative energy 
without filters and solid vertical lines are the relative energy with filters. Absorbance of 
specific filters(T, %) utilized with each lamp is shown by the solid line curve. 

In each experiment PAR was maintained at the level 100 ± lOW 1m2
• By means of a planer 

water screen, and when necessary glass heat-protecting filters, the share of IR radiation was 
established at a level of about 25 % of the radiation in the PAR region. The spectral distribution 
of irradiance was checked by a portable PDSF spectrophotometer. 

Sixteen experiments with cucumbers and seven with tomatoes were carried out with various 
spectral combinations. The results of the experiments (nine characteristic experiments were 
selected for cucumbers) are given in Tables 2 and 3. 
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TABLE 2 Productivity of Cucumber Variety "Moskovskii Teplichnyi" with Variation of the 
SEectrum in the PAR Region. 

Ratio of irradiance in three PAR ranges, (%) Fruit yield Period Average daily 
(kg/m2

) of growth fruit yield, 
Eb Eg Er (days) (g/m2

) 

(400-500m) (500-600m) (600-700m) 

40 20 40 20.8±1.6 80 260.0±20.0 

60 20 20 16.1±1.3 90 178.8±14.4 

20 60 20 17.5±1.2 80 218.3±15.0 

40 40 20 18.2±1.6 85 214.2±18.8 

34 33 33 22.5±1.9 75 200.0±29.3 

15 35 50 22.l±1.5 70 322.8±21.9 

25 35 40 25.2±1.5 75 336.0±20.0 

15 45 40 27.4±1.7 70 391.4±24.3 

20 40 40 27.5±1.3 70 392.9±22.9 

TABLE 3 Productivity of Tomato Variety "Starfire" with Variation of the Spectrum in the PAR 
Region. 

Ratio of irradiances in three PAR ranges, % Fruit yield Period Average daily 
(kg/m2

) of growth fruit yield, 
Eb Eg Er (days) (g/m2

) 

(400-500m) (500-600m) (600-700m) 

60 20 20 13.2±0.9 130 101.5±7.0 

20 60 20 11.1±0.7 120 92.5±5.8 

20 20 60 16.9±1.2 100 169.0±12.0 

40 20 20 15.7±1.0 120 131.0±8.0 

20 40 40 15.5±0.9 110 141.0±8.0 

34 33 33 15.4±1.1 110 140.0±10.0 

10 15 75 18.5±1.2 100 185.0±12.0 

Assuming total productivity of the crop P, kg/m2
, is a function of the share of irradiance in each 

of the three spectral ranges (Eb' Eg, Er) of the total EpAR and taking into account the equation of 
the relation existing for these variables, we obtain a system of equations. 

P - f(Eb, Eg, Er); 
Eb + Eg + Er = 100% 
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We reduce the problem to three-dimensions and, drawing sections along one of the variables in 
accordance with its values realized in the experiments, we represent the results obtained in the 
form of Figure 2. For each of the vegetables we obtained six families of curves, but we have 
limited ourselves here to three characteristic relations (the results of all 16 experiments with 
cucumbers were taken into account). 
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Fig. 2. Dependence of productivity of cucumbers and tomatoes on share of radiation of 
one of the three spectral ranges (Eb' Eg, or Er) with total irradiance EpAR = lOOW/m2:1) P = 

I(Er), Eb is a parameter (B25, for example, means that the share Eb = 25%; b) P = I(E!!,), Er 
is a parameter; c) P = I(Eb), Eg is a parameter. 
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Before the main series of experiments on the cucumbers, an attempt was made to evaluate the 
photophysiological significance of each of the three PAR ranges. It was found that for irradiance 
EpAR = 50 W/m2 cucumbers, unlike many other plant species, are not formed either with only blue 
or green rays, and even with a high level Em = 100 W 1m2 an extremely low yield was obtained 
only in blue rays. 

The character of the dependence of the productivity of cucumbers on an increase of the share of 
radiation in the green and red ranges of PAR is about the same. There are fairly distinct optima 
of productivity for Eg = Er = 35-45% of the total level. With an increase of the share of radiation 
in any of the indicated ranges above 45% (and corresponding decrease of the share of radiation 
in the other range), the productivity of the plants decreases markedly. The presence of blue 
radiation in the spectrum is necessary, but in a small dose. The dependence of productivity on 
the share of blue radiation reaches a maximum when Eb = 15-20%. It is interesting to note that 
with a decrease of the share of green radiation, the position of the maximum of the productivity 
curve shifts toward Eb. 

Thus with respect to a cucumber photoculture, we need speak about the preference of a 
"balance" of radiation in ranges 500-600 and 600-700 nm with the small addition of radiation in 
the range 400-500 nm. The best results for commercial technology are obtained with a spectral 
ratio Eb:Eg:Er = 15-20%:35-45%:40-45% (USSR, 1991). 

As follows from the results of experiments on cucumbers (see Table 2), optimization of the 
spectrum creates additional possibilities for reducing the cost of production due to a noticeable 
reduction of the period of growth. Substantially different conclusions about preferable spectra 
follow from an analysis of the results of experiments on tomatoes (see Fig. 2 and Table 3). The 
qualitative and quantitative effect of each of the three PAR ranges on the formation of the tomato 
crop is displayed rather clearly, despite the smaller number of experiments with a fixed spectrum 
than for cucumbers. We note the most important significance of radiation is the region 600-700 
nm to acheive a high productivity of the tomato community. With a change in the share ofEr 
over 20-75%, the tomato yield can differ by almost 1.7 times; the maximum level of productivity 
in the experiments was achieved for Er = 75%, although there are signs of saturation of the 
dependence already for Er = 60-65%. Radiation in ranges 400-500 and 500-600 nm, conversely, 
is needed in insignificant shares, satisfying evidently, photomorphogenetic processes in plants. 
Thus, already for Eb = Eg = 15-20% against the background of a high share of red radiation, a 
drop of tomato productivity is observed. For Er = 35-40% an increase of radiation in the green 
region weakly affects productivity, an increase of the share of red radiation for Er = 20-40% can 
lead even to an increase of yield. However, all these effects are observed against the background 
of a low level oftomato productivity. 

The requirements imposed on preferable spectral characteristics for tomato photocultures 
formulated on the basis of the studies are: Eb:Eg:Er = 10-20%:15-20%:60-75%.* 

The requirements imposed on the spectrum for growing tomatoes and cucumbers can be 
regarded as optimal. 

* A team of authors of IBF SO RAN and VNISI applied for a patent on a method of growing 
tomatoes under artificial conditions and a favorable decision was o~Jtained. 
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The experimental data pennit us to make an estimate of the correspondence of the spectral 
requirements in the PAR region to the spectrum of certain commercial light sources to the 
productivity of tomatoes and cucumbers. The data are given in Table 4, where the level of 
maximum productivity corresponds to the experimental results with the recommended optimal 
spectral ratios. Lower productivity values were obtained with the use of combinations close or 
corresponding to the PAR spectrum of commercial lamps (DRLF, DNaT, DR!, etc.). 

TABLE 4. Calculation of the PAR efficiency of some types of light sources for cucumber and 
tomato culture. Productivity estimated based on maximum productivity detennined in previous 
experiments of Tables 2 and 3. 

Productivity 
(% of maximum) 

Lamp Type Cucumbers Tomatoes 

DksT 81 95 

Incandescent 78 84 

DNaT 70 83 

DR! 66 70 

DRLF 64 60 

As is seen, not one of the commercial light sources can be recommended for efficient use in 
commercial technology of cucumber culture, and the least suitable for this purpose are DRLF400 
lamps; the spectrum of lamps with a high radiation efficiency in the PAR region (DNaT400 and 
DR!2000-6) are almost equal to the spectrum ofDRLF400 lamps. We note that the requirements 
imposed on the "ideal" spectrum for growing cucumbers can be rather simply realized by 
selecting the appropriate filling of the MHLs. Work is presently underway to create such lamps. 

Type DRLF400 lamps were also least acceptable for irradiating tomatoes. The creation of a 
special grow light on the basis of MHLs with a spectrum close to that in the PAR region of 
incandescent lamps (lLs) is a technically more complex problem. However, as the results of our 
experiments, confinning the conclusions of (Sharupich, 1982), showed, under conditions of an 
intense tomato culture, the use of HPSLs provides a sufficiently high level of productivity. For 
large conveyor-type plant production facilities, it would be expedient to create 700- or 1000-W 
HPSLs. 
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EFFECTS OF RADIATION QUALITY, INTENSITY, AND DURATION ON 
PHOTOSYNTHESIS AND GROWTH 

Bruce Bugbee 

Plants, Soils, and Biometeorology Department Utah State University, Logan, UT 84322-4820 

THE RELATIONSHIP BETWEEN RADIA nON ABSORPTION, 
PHOTOSYNTHESIS, AND PLANT GROWTH 

Importance of Radiation Absorption 

Increases in plant dry mass are not always associated with increases in photosynthetic rate, 
particularly when increased internode elongation increases plant height or diameter. Photosyn
thetic efficiency is rigorously defined as the amount of CO2 fixed· per absorbed photon, a ratio 
known as quantum yield. Longer internodes typically increase the interception and absorption of 
photons, causing increased plant growth (C02 fixed or dry mass gain) without an increase in 
quantum yield (photosynthesis). An increase in the physical process of radiation interception is 
often incorrectly interpreted as an increase in the biochemical process of photosynthesis. 

Plant scientists continue to grossly underestimate the magnitUde and importance of side lighting 
in single-plant studies. The reflective walls of growth chambers mean that side light intensity is 
only slightly less than that from the top. If a single, spaced plant is considered to be spherical 
rather than circular, the surface area for radiation interception changes from 1tr to 41tr, a 400% 
increase. Even if only the top half of the sphere is exposed to light, the surface area and thus 
light absorption are still twice that of a circle. In many studies, plant surface area and radiation 
absorption should be analyzed as a cylinder determined by plant height and width, rather than as 
a circle determined by width only. 

Side lighting means that tall plants intercept more photons and will have a higher growth rate 
than short plants, even when the irradiance level is identical at the top of the plants. It is 
important to distinguish between radiation absorption and photosynthesis because the increases 
in growth or width caused by increased side lighting do not occur in plant communities where 
plants form a closed canopy and mutual shading eliminates side lighting. 

In our studies with wheat canopies, elevated CO2 increased photosynthesis, which increased 
tillering (branching) and lateral spread at the edges of the plant canopy. Precise measurements 
of the canopy-absorbing area showed that halJofthe CO2 effect was caused by increased 
radiation absorption. The direct CO2 effect on photosynthesis was only about 50% of what we 
originally measured. 

*Research reported in this paper was supported by the National Aeronautics and Space 
Administration cooperative agreement 2-139, and by the Utah Agricultural Experiment Station. 
This is Journal paper number 4665. 
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Small increases in lateral spread cause surprisingly large increases in radiation absorption. 
Figure 1 shows how a 10% increase in lateral spread of a wheat canopy resulted in a 24% 
increase in plant surface area causing a similar increase in growth rate and a corresponding 
overestimation of the effect of CO2 on plant growth per unit surface area. 

~----------100cm------r---~ 

Plant Area = 0.8 m2 

Actual Area = 1.0 m2 

(25% error) 

80cm 90cm 

Fig. 1. The effect of a 10% increase in lateral spread (5 cm on all sides) on surface area of 
a plant canopy. The planted surface area was 0.8 m2

• The actual plant growth area was 
0.99 m2

, resulting in a 24% increase in final/initial surface area. Small increases at the 
perimeter cause large increases in surface area. 

Single-Leaf Maximum Ouantum Yield and Whole-Canopy Actual Quantum Yield 

Photosynthetic efficiency is routinely measured by determining the maximum quantum yield of 
single leaves, which occurs only at low PPF (less than 200 J.lmol m-2 

S-I) and is measured at the 
initial slope of the PPF response curve. It is often useful to determine the average daily quantum 
yield of whole plants at much higher PPF levels, which requires determining the number of 
photons absorbed by a whole plant. This is difficult because it requires measuring and 
integrating the incident, transmitted, and reflected photons on all sides of the plant. However, 
these measurements are often made in plant canopies where the edge effects are small or can be 
eliminated by artificial shading (Gallo and Daughtry, 1986). 

We have used fiberglass window screen for artificial shading to sjmulate the effect of additional 
plants and to minimize edge effects. The screen is hung over a wire that is stretched around the 
perimeter of the canopy at the top edge. The wire and screen are raised daily as the canopy 
grows. The window screen extends from the top to the bottom of the canopy. The goal is to 
create the same vertical radiation attenuation at the edge of the canopy as the center. The data in 
Table 1 indicate that 3 layers of window screen may be necessary to create a similar radiation 
attenuation at the edges. 
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TABLE 1 A comparison of the radiation attenuation from two or three layers of window screen 
for artificial shading at the edge of a dense wheat canopy. 

cm from top of center of tub (edge) 3 layers of (edge) layers of 
canopy windowscreen windowscreen 

0 1100 1100 1100 

6 750 750 750 

10 265 225 225 

17 50 35 100 

36 0 0 20 

Values are for PPF in ~mol m-2 S-I 

Whole-canopy quantum yield 

We calculated average daily canopy quantum yield. This involved integrating net 
photosynthesis during the light period and was based on the assumption that dark respiration 
occurs at the same rate in the light and the dark (McCree, 1986). Dark respiration may be 
slightly lower in the light because ATP can be supplied in leaves by photophosphorylation, or 
slightly higher because the energy demand for translocation and active uptake are increased. Net 
photosynthesis plus dark respiration equals gross photosynthesis in Ilmol m-2 S-I of CO2• Gross 
photosynthesis divided by absorbed photons (Ilmol m-2 S-I) is canopy quantum yield (Bugbee and 
Monje, 1992; Monje, 1993; Monje and Bugbee, 1994). 

DEFINING GROWTH AND DEVELOPMENT 

I define plant growth as an increase in dry mass and define plant development as a change in 
plant shape. These are important distinctions when describing the effect of radiation on 
internode elongation. An increase in stem elongation is not necessarily an increase in growth. 
Some radiation environments increase plant height with no change in dry mass, e.g. far-red light 
can cause rapid stem elongation with no change in photosynthesis or dry mass. 

PHOTOSYNTHETIC RATE IS SURPRISINGLY LITTLE AFFECTED BY LIGHT 
QUALITY FROM STANDARD LAMPS 

The effect of radiation quality on photosynthesis has fascinated physiologists for over a hundred 
years. Early studies were done on photosynthetic bacteria and algae and we have long known 
that green light is less useful than other colors. McCree (1972a, 1972b) made comprehensive 
studies of photosynthesis in single leaves and described an average relative quantum efficiency 
curve (Figure 2), which was replicated by Inada (1976, 1978a, 1978b) and extended by Sager et 
al. (1982, 1988). However, the most common method of measuring photosynthetically active 
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radiation gives equal value to all photons with wavelengths between 400 and 700 run and is 
referred to as Photosynthetic Photon Flux (PPF). Because blue and green photons result in about 
25% less photosynthesis than red photons, a PPF sensor overestimates the photosynthetic value 
of the blue photons from a source, for example, metal halide lamps. However, a PPF sensor 
does not respond to ultraviolet or far-red radiation and these wavelengths drive some 
photosynthesis. A lamp with significant amounts ofUV and far-red radiation could thus have a 
higher photosyn-thetic rate than predicted by a PPF sensor. 
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Fig. 2. The quantum (PPF) response when all photons are weighted equally 
between 400 and 700 nm: and the relative quantum efficiency curve as 
determined by the average plant response for photosynthesis (from McCree. 
1972a). The quantum response overestimates the photosynthetic value of 
photons between 400 and about 550 nm, but underestimates the photosynthetic 
value of photons below 400 and above 700 nm. 

Differences between the Quantum and the Actual Plant Response for Common Radiation sources 

Because the spectral output for electric lamps is rea.sonably constant, the ratio of the constant 
photon response (quantum or PPF response) to actual plant response can be calculated from the 
average quantum efficiency curve (from McCree, 1972a). This ratio is shown in Table 2. The 
differences among lamp types are surprisingly small. Similar calculations have been described 
previously (McCree. 1981). 

An additional source of error is that all sensors that integrate photosynthetic radiation are 
imperfect. Barnes et al. (1993) analyzed the errors associated with commercial sensors designed 
to integrate photosynthetic radiation over a range of wavelengths: 
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The ratio in Table 2 some lamp types is not intuitively obvious so it is useful to plot the spectral 
output from the lamps (Figure 3) and plot this output with the average plant response curve 
(Figure 4). 

TABLE 2. The spectral efficiency of six electric lamps and 
sunlight. 

Lamp type Ratio 

Low Pressure Sodium (LPS) .99 

High Pressure Sodium (HPS) .95 

Incandescent (INC) .95 

Metal Halide (MH) .90 

Cool White Fluorescent (CWF) .89 

Red Light-Emitting Diode (LED) .89 

Solar on a clear day .88 

Spectral efficiency is defined as the ratio of the lamp spectral output multiplied by 
McCree's quantum efficiency weighting factors, divided by the number of photons 
between 400 and 700 nm. Examples are given in Figure 4. The ratio for solar radiation 
is not a constant (see Figure 3). The LED had a peak output of 660 nm. LED's with peak 
outputs at shorter wavelengths wouldhave greater spectral efficiency, e.g. a peak output 
at 610 nm would result in an efficiency close to 1.0. 

PLANT GROWTH IN SOME SPECIES IS SURPRISINGLY LITTLE 
AFFECTED BY LIGHT QUALITY 

Although photosynthesis may not be affected by light quality in short-term studies, the spectral 
quality from some lamps decreases chlorophyll concentration and alters phytochrome status, 
which can be detrimental to plant growth in long-term studies. The monochromatic radiation 
from low-pressure sodium lamps can significantly reduce chlorophyll and plant growth in 
several dicotyledonous species, for example. . 
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Fig. 3. The spectral characteristics of the seven radiation sources discussed in Table 2. 
Data are normalized to a peak value of 100 to facilitate comparisons and plotted on a 
photon flux basis, which is a better predictor of plant response than is energy flux 
(adapted from Barnes et aI., 1993). The solar curve was measured at noon on a sunny ay 
in Logan, UT. Increasing diffuse radiation (from clouds or low sun angles) shifts the 
peak to shorter wave-lengths and would tend to decrease the ratio for solar shown in 
Table 2. 
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Fig. 4. A comparison of the spectral output from low pressure sodium (LPS), red LED's, 
metal halide (MH), and high pressure sodium (HPS) lamps to the average quantum 
efficiency curve. Monochromatic, LPS lamps are near the peak quantum yield (a ratio of 
0.99). Some output of red LED's exceeds 680 nm where the plant response drops 
sharply. The ratio for MH lamps (0.90) is reduced because they emit blue photons but 
this reduction is offset some because they emit photons in the UV region, which are not 
measured by PPF sensors. HPS lamps have a relatively high ratio (0.95) because most of 
their output is near the peak quantum yield. 

Effect of spectral quality of wheat growth and yield 

Not all species are sensitive to spectral quality, however. Low-pressure sodium lamps did not 
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decrease the growth and yield of wheat compared to HPS and MH lamps (Table 3), a finding we 
recently confirmed. The plants under the low pressure sodium lamps of course did not look 
green, but the apparent difference in green color disappeared when the plants were removed and 
placed together in full spectrum light. Studies with wheat grown under red LED's also indicate 
that chlorophyll synthesis, photosynthesis, growth, and yield of wheat (Triticum aestivum) are 
insensitive to spectral quality. 

TABLE 3. The effect of radiation source on growth and yield of wheat grown under 
three radiation sources. (adapted from Guerra et aI., 1985). 

Lamp Type Total Biomass Grain Yield 
(g m-2) (g m-2) 

Low Pressure Sodium 171 61.7 
High Pressure Sodium 159 58.8 
Metal Halide 162 62.4 

a = 0.05 n.s. n.s. 

Effect of HPS and MH lamps on soybean growth and yield 

Soybean leaves grown under HPS lamps are visually chlorotic and have reduced chlorophyll 
concentrations compared with plants grown under MH lamps. However, most plant leaves have 
excess chlorophyll, and small reductions do not necessarily decrease photosynthetic rates. Three 
recent studies in our laboratory confirm the reduction in chlorophyll under HPS lamps, but 
indicate that this reduction does not reduce growth or yield (Table 4). In fact, growth and yield 
were slightly better under HPS lamps. There was greater petiole elongation in plants grown 
under HPS lamps, but we lowered the plants as they grew taller to maintain a constant PPF at the 
top of the canopy. Lateral spread was prevented by enclosing the plants with a double layer of 
window screen around the perimeter of the stand. The reduced chlorophyll concentration may 
have increased PPF transmittance and allowed more PPF to penetrate to lower leaves in the 
canopy, thereby increasing canopy photosynthesis. 

TABLE 4. The effect of lamp type on the seed yield of soybean canopies. 

Lamp type 

Metal Halide 
High Pressure Sodium 

400 

90 
100 

PPF (Ilmol m-2s-l
) 

600 

91 
100. 

800 

83 
100 

The data are normalized to 100% in each study. In spite of reduced chlorophyll 
concentrations, soybean canopies grown under HPS lamps had slightly increased 
yields. 
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RADIATION INTENSITY: INSTANTANEOUS VS. INTEGRATED DAILY 
PHOTOSYNTHETIC PHOTON FLUX 

Daily plant growth is closely related to the daily integrated PPF (mol m-2 d- l). Leaf emergence 
rates are determined by daily integrated PPF (Yolk and Bugbee, 1991; Faust and Heins, 1993), 
and physiological and anatomical characteristics of leaves appear to be determined by the integ
rated rather than the instantaneous PPF. When Chabot, Jurik, and Chabot (1979) examined 
combinations of photoperiod and instantaneous PPF; maximum photosynthetic rate, specific leaf 
mass, and leaf anatomy were all determined by the integrated daily PPF; instantaneous PPF had 
little effect. 

One of the objectives of the workshop that resulted in these proceedings was to establish 
guidelines for radiation intensity in controlled environments. The use of high intensity discharge 
lamps (HPS and MH lamps) means that full summer sunlight (50 to 60 mol m-2 d-l

) can easily be 
obtained in growth chambers. Although the instantaneous value of summer sunlight is about 
2000 flmol m-2 

S-l, it is not always necessary to obtain this PPF leyel in growth chambers because 
the photoperiod can be extended to achieve integrated PPF levels similar to the field. A PPF of 
only 800 flmol m-2 S-l during a 16-h photoperiod results in an integrated PPF of 46.1 mol m-2 d-l, 

which is close to average field values for June and July in much of the northern hemisphere. 
Some short-day plants require a 12-h photoperiod, which decreases the integrated daily PPF in 
both field and controlled environments. Geographic locations and seasons (equinoxes) with 12-h 
photoperiods have lower daily PPF levels (35 to 40 mol m-2 d-l

), so high instantaneous PPF 
levels may still not be required in growth chambers. A PPF of 800 flmol m-2 S-l with a 12-h 
photoperiod results in 34.6 mol m-2 d- l

• 

THE PPF RESPONSE OF SINGLE LEAVES AND CANOPIES 

Light response curves for single leaves are well characterized and some workers have suggested 
that PPF levels that saturate single-leaf photosynthesis are adequate for controlled environment 
studies. However, canopy photosynthesis saturates at much higher PPF levels than single leaves 
and PPF levels higher than 1000 flmol m-2 S-l would be beneficial in some studies. We have 
found that the photosynthetic response of wheat canopies is linear up to full sunlight (2000 flmol 
m·2 S-l; Meek, 1990; Figure 5). 

Canopy photosynthetic efficiency at a PPF of 100 mol m-2 d-l 

The data in Figure 5 (previous page) are based on short-term (about I-h) measurements at each 
PPF level, and these high photosynthetic rates may not be sustained over longer time intervals. 
However, our studies indicate that high photosynthetic rates are sustained in wheat canopies over 
a 20-h photoperiod at twice the integrated daily PPF of full summer sunlight (Figure 6). 
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m-2 S-I. The photoperiod was 20-h. There was no evidence for feedback inhibition of 
photosynthesis, as indicated by a decreasing photosynthetic rate during the photoperiod, in any 
of the conditions except at the highest PPF level coupled with elevated CO2, The magnitude of 
feedback inhibition gradually decreased in the days following the increase in PPF. Within about 
6 days after the PPF was increased, the decrease in photosynthesis was less than 5% of the rate at 
the start of the light period. The daily integrated PPF at 1400 J.lmol m-2 S-I was 100.8 mol m-2 d-I, 
or about twice full summer sunlight. Plants were grown at a constant 23°C day/night 
temperature. Data are from Monje (1993). 

CONCLUSIONS 

Differences in radiation quality from the six most common electric lamps have little effect on 
photosynthetic rate. Radiation quality primarily alters growth because of changes in branching 
or internode elongation, which change radiation absorption. Growth and yield in wheat appear 
to be insensitive to radiation quality. Growth and yield in soybeans can be slightly increased 
under high pressure sodium lamps compared to metal halide lamps, in spite of greatly reduced 
chlorophyll concentrations under HPS lamps. Daily integrated photosynthetic photon flux (mol 
m-2 d-I) most directly determines leaf anatomy and growth. Photosynthetic photon flux levels of 
800 J.lmol m-2 S-I are adequate to simulate field daily-integrated PPF levels for both short and 
long day plants, but plant canopies can benefit from much higher.PPF levels. 
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SHORT REpORT 

LIGHT PERIOD REGULATION OF CARBOHYDRATE PARTITIONING 

Harry W. Janes 

Dept. of Plant Science, Rutgers University, New Brunswick, NJ 08903 

We have shown that the photosynthetic period is important in regulating carbon partitioning. 
Even when the same amount of carbon is fIxed over a 24h period considerably more is 
translocated out of the leaf under the longer photosynthetic period. This is extremely 
important when parts of the plant other than the leaves are to be sold. It is also important to 
notice the amount of carbon respired in the short photosynthetic period. The light period 
effect on carbohydrate fIxation, dark respiration and translocation is shown in the following 
table. 

Length of Photosyn. Total CH20 Total CH20 Total CH20 Total CH20 
light period rate fIxed during respired translocated translocated 

(h) (g CH20 light period during dark during light over 25 h 
m-2 h-1) (g m-2) period period (g m-2) 

(g m-2) (g m-2) 

8 0.74b 5.95a 1.56b 1.29b 3.46a 

16 0.37a 5.87a 0.55a 3.32a 4.88b 

Values in column followed by the same letter are not signifIcantly different at P~0.05 using 
F-test. 

Experimental Conditions: 

Incandescent and cool white flourescent lamps (plants were grown for 38 days under 12 
hr photoperiod at 150 j.lmol m-2s-1• At 38 days the plants were separated into 2 groups. 
One group received an 8 hr photoperiod at 300 j.lmol m-2s-1 and a second group received 
a 16 hr photoperiod at 150 j.lmol m_2s-1) 

Temperature: Day = 26° C 
Night = 23° C 

Humidity: 70-80% 

350-400 ppm 

Plants were grown in 10 cm pots in a peat: vermiculite: perlite mix (40:40:20 by volume) 
Plants were irrigated twice weekly with half-strength Hoagland solution 

Reference: 

Lobendra, S. & H.W. Janes, 1992. Light Duration Effects on Carbon Partitioning and 
Translocation in Tomato. Scientia Horticultura 52: 19-25. 
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SHORT REpORT 

LEAF ABSORBANCE AND PHOTOSYNTHESIS 

Kees Schurer 

IMAG-DLO, P.O. Box 43,6700 AA Wageningen, The Netherlands 

The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic 
action spectrum of chlorophyll. Of course, absorption of photons is needed for 
photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily 
true. As a check on the existence of absorption limits we measured spectra for a few different 
leaves. 

Two techniques for measuring absorption have been used, viz. the separate determination of 
the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating 
sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. 
In a cross-check both methods yielded the same results for the absorption spectrum. 

The spectrum of a Fuchsia leaf (fig. 1), covering the short-wave region from 350 to 2500 nm, 
shows a high absorption in UV, blue and red, the well known dip in the green and a steep 
fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent 
absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 
nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different 
depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. From 
figure 2, showing spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher 
chlorophyll content) it is clear, that the upper limit for photosynthesis can not be much above 
700 nm. No evidence, however is to be seen of a lower limit for photosynthesis and in fact, 
some experiments down to 300 nm still did not show a decrease of the absorption although it 
is well recognized that no photosynthesis results with 300 nm wavelengths. 
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Fig. 1. Shortwave abosrption spectrum of a Fuchsia leaf 
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PLANT REQUIREMENTS 

NON-PHOTOSYNTHETIC (PHYTOCHROME) 
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PHYTOCHROME-MEDIATED RESPONSES 
IMPLICATIONS FOR CONTROLLED ENVIRONMENT RESEARCH FACILITIES 

Harry Smith 

Department of Botany, University of Leicester, Leicester LEI 7RH UK 

Light is undoubtedly the most important environmental variable for plant growth and 
development; plants not only use radiant energy in photosynthesis, they also respond to the 
quantity, quality, direction and timing of incident radiation through photomorphogenic responses 
that can have huge effects on the rate of growth and the pattern of development. It is surprising, 
therefore, that the manufacturers and suppliers of controlled environment facilities have been 
singularly uninventive in the design of the lighting assemblies they provide. The consumer has 
one choice only - a lighting assembly that provides irradiance levels usually only a fraction of 
sunlight, and a control system that is limited to regUlating the timing of the on-off switch. The 
reasons for these limitations are partly technological, but in the main they result from ignorance 
on the part of both the consumer and the manufacturer. A specific and powerful example of this 
ignorance relates to the importance of the so-called far-red wavelengths (FR = 700-800 nm). 
Because the human eye can hardly detect wavelengths above 700 nm, and photosynthesis also 
cuts off at ca. 700 nm, the majority of plant and crop physiologists are still almost completely 
unaware that FR radiation can have massive effects on growth rate and development. In 
consequence, most growth cabinets have light sources based on fluorescent tubes, and provide 
very little FR apart from that emitted by a token number of small incandescent bulbs. Larger 
growth facilities often use broader spectrum light sources, but growth facilities that provide the 
capability to vary the FR incident upon the plants are about as abundant as seals in the Sahara. 
This article sets the background of the significance of FR radiation in the natural environment 
and its importance for plant growth and development in the hope that it might inform 
intelligently those concerned with improving the design of plant growth facilities. 

The Natural Radiation Environment 

The daylight spectrum. The light environment experienced by plants in nature is obviously 
complex, but a number of generalisations can usefully be made. Solar radiation outside the 
atmosphere is distributed according to Planck's radiation distribution law, with the sun behaving 
as a blackbody emitter with an apparent surface temperature approximating 5800° K. From 
Wien's simplifications of Planck's radiation formulae, the wavelength of maximum quantum 
emission is ca 620 nm, whereas in energy terms it is ca 500 nm; radiant emission falls off sharply 
at lower wavelengths and more gradually at higher wavelengths. This means that about 55% of 
the radiation incident on the earth's surface falls within the 380-800 nm range of photochemical 
activity - which is fortunate, because photochemistry drives the energetic reactions of the 
biosphere via photosynthesis. Atmospheric components including ozone, oxygen, water vapour 
and carbon dioxide selectively absorb narrow wavelength bands, reSUlting in the typical radiation 
distribution of daylight at the earth's surface seen in Figure 1. This radiation distribution is 
remarkably constant, being affected little by clouds and other climatic conditions (Holmes and 
Smith, 1977a). Pathlength through the atmosphere is important, of course, and as pathlength 
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increases with the sun's approach to the horizon at dusk (or dawn), refraction and Rayleigh 
scattering (inversely proportional to the fourth power of the wavelength) gives dawn/dusk 
radiation distributions with relatively elevated levels of blue light, and slightly increased levels 
ofFR compared to daylight. 
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Fig. 1. The spectral distribution of daylight at the earth's surface (solid line) and under a dense 
vegetation canopy (dotted lines). 

Underwater light. The underwater light environment is of major importance, since more than 
half of plant life is underwater. Refraction at the air-water discontinuity leads to the incident 
light from above being concentrated into a cone of half-angle 48.6°; consequently, a sensor 
facing upwards below, but near to the surface inevitably receives a proportion of upwelling 
radiation reflected back down from the surface. More important phenomena, as far as radiation 
distribution is concerned, are scattering and absorption by water itself, and by d~s~olved 
molecules or suspended particles. Rayleigh scattering results in the selective attenuation of the 
blue region of the spectrum of downwelling radiation. Water has strong absorption bands at ca. 
730 nm and in the near infra-red, and therefore the FR is also selectively attenuated. Thus, in 
clear water, downwelling radiation is effectively "compressed" with increasing depth into a 
decreasingly narrow band of wavelengths, usually peaking at or around 500 nm. Absorption and 
scattering by algae, or by organic debris, causes the spectral distribution of radiation in turbid 
waters to be very variable. 

The light environment within vegetation canopies. Ecologically. the most important fluctuations 
in radiation distribution occur when radiation interacts with vegetation. The photosynthetic 
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pigments, the chlorophylls and carotenoids, absorb radiation over almost the whole of the visible 
spectrum (Le. 400-700 nm). A small fraction of the "green" radiation is either transmitted or 
reflected, which is why leaves are green to our eyes. What is not so immediately obvious is that 
vegetation hardly absorbs any radiation between 700 and 800 nm. Thus, virtually all the 
incoming FR is either transmitted or reflected; i.e. the FR is scattered either through the leaf, or 
from the surface of the leaf. Since our visual systems are very insensitive to radiation beyond ca 
700 nm, we fail to recognise that leaves should look far-red, rather than green! Figure 1 shows a 
typical daylight spectrum within a dense vegetation canopy, and demonstrates the marked 
depletion of red (Le., R, 600-700 nm) and the relative enhancement of FR radiation within 
canopies. 

0.2 

Daylight 0.05 - 1.25) 

~TwllIght (0.65 - 1.15) 

~ canopr Shade 
(0.05- .15) 

Fig. 2. The relationship between R:FR ratio and phytochrome photo equilibrium (PfrlP). The 
shaded areas indicate the ranges of R:FR that are found under ecologically important conditions. 
Modified from Smith (1982). 

The extent to which R is depleted and FR relatively enhanced by vegetation varies, of course, 
with the density of the canopy and the depth of the sensor within that canopy, and direct 
relationships with leaf area index have been established (Holmes and Smith, 1977b). A more 
subtle effect of vegetation on the relative amounts of R and FR radiation depends on the direction 
of propagation of the radiation being measured, or perceived. Unfiltered solar radiation is 
propagated downwards and is highly directional; Le., only slightly scattered. After interaction 
with the leaves of a vegetation canopy, multiple scattering occurs, causing the radiation to be 
propagated more randomly. This means that radiation propagated more-or-Iess horizontally 
within a canopy will already have interacted with vegetation and will consequently be depleted in 
R and relatively enriched in FR, compared to radiation within a canopy that is propagated more
or-less vertically downwards (Smith, Casal and Jackson 1990). This point has a far-reaching 
significance, as will become evident later. 

The biological significance of the variations in the relative amounts ofR and FR radiation in the 
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natural environment is that they provide signals of vital ecological importance. Plants have 
evolved a sophisticated battery of photoreceptors that enable them to sense environmental 
variations in R and FR and to use the information so obtained to direct appropriate alterations in 
metabolism, growth and development. Perception of environmental R and FR allows plants to 
detect the presence of neighbours, to gauge their competitive threat, and to react to actual or 
incipient shade by appropriate redirection of growth and development. The photoreceptors 
responsible for the perception of R and FR are the phytochromes. 

The Phytochromes - Sensors of the Natural Radiation Environment 

The Phytochrome family. The phytochromes are a £'Ul1ily of photo chromic photoreceptors each 
member of which consists of an apoprotein bearing a linear tetrapyrrole chromophore. Each 
phytochrome is capable of existing in two stable forms: Pr, which absorbs maximally at ca. 660 
nm, and Pfr, which absorbs maximally at ca. 730 nm. Upon the absorption of radiation, Pr is 
photo converted to Pfr, and Pfr photo converted to Pr, according to the following scheme: 

The absorption spectra of the Pr and Pfr forms of phytochrome isolated from etiolated oats show 
widely overlapping bands of absorption below ca. 730 nm, so that in broad-band radiation (such 
as daylight) both forms are continually photoexcitecl, resulting in a steady state photo equilibrium 
(defined as PfrlP, where P = Pr+Pfr), in which the proportions of the total phytochrome present 
as Pr and Pfr are functions of the radiation distribution and of the absorption cross sections ofPr 
and Pfr. Since the absorption maxima are in the R and the FR, it is these wavelengths that are 
most important in achieving equilibrium. For this reason Smith and Holmes (1977) proposed 
that daylight spectra could be usefully characterised and simplified by measuring the ratio of 
radiation in two 10 nm wavebands centred on the absorption maxima ofPr and Pfr. Thus, the 
parameter R:FR, which is the ratio of the photon flux density in the 655-665 nm waveband, to 
that in the 725-735 nm waveband, has become the standard way of characterising daylight for 
photomorphogenic purposes. 

There are known to be at least five members of the phytochrome family (i.e., phytochrome A to 
phytochrome E) in higher plants, as judged by Southern analysis of Arabidopsis genomic DNA 
(Sharrock and Quail 1989). Evidence from physiological studies of normal, mutant and 
transgenic phy gene overexpressers indicates that each member of the family probably has a 
distinct eco-physiological function, although functional overlap may occur under certain 
circumstances (Smith and Whitelam 1990). On this basis, the phytochromes represent a battery 
of photosensors that enable plants to obtain ecologically significant information from the light 
environment. 

R:FR Ratio and PfrlP. The benefit of using R:FR as a simplified parameter of the spectral 
distribution of natural radiation lies in the fact that R:FR can be readily transformed into a 
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measure of the relative proportions ofPr and Pfr present at photo equilibrium. Figure 2 shows the 
hyperbolic relationship that exists between R:FR (as defined above) and PfrlP (Smith and 
Holmes, 1977). Using this relationship, any measured value ofR:FR can be transformed to a 
value which represents the PfrlP to be expected in the outer epidermis of the irradiated tissue 
(ignoring any light reflected or scattered back from within that tissue); the transformation is 
made simply by reading PfrlP from the curve for any measured value ofR:FR. The actual direct 
measurement of PfrlP in light-grown plants yet eludes the advance of analytical technology, 
mainly because there is very little phytochrome present and its absorption is overwhelmed by 
that of chlorophyll. The parameter arrived at by transforming R:FR is not necessarily an accurate 
measure of the real PfrlP in the tissue; it is merely a physiologically-relevant way of expressing 
the relative amounts of R and FR in the incident radiation. Reading PfrlP from the curve in 
Figure 2 is inadvisable for artificial sources in which either the R or FR is filtered out, or for 
sources in which blue light (which is capable of photo converting Pr and Pfr) predominates. 
Under these circumstances it is advisable to integrate the spectral photon irradiances for the 400-
800 nm waveband with the extinction coefficients of Pr and Pfr and the quantum efficiencies of 
the Pr Pfr and Pfr Pr phototransformations. In other words, the influence of light over the 
whole wavelength region absorbed by phytochrome on the photo conversion ofPr to Pfr, and vice 
versa, can be calculated, resulting in a more meaningful value for PfrlP than can be derived from 
R:FR. Simple computer protocols exist for this transformation. 

The relationship between R:FR and PfrlP in Figure 2 reveals three important points. First, 
because R:FR during the day is very constant and unaffected by weather conditions, it provides 
the plant with a norm against which fluctuations in R:FR due to other environmental conditions 
may be compared. Secondly, underwater, R:FR increases very sharply with depth of immersion, 
but because the underwater values ofR:FR are on the asymptote of the relationship between 
R:FR and PfrlP, it is clear that phytochrome would be an insensitive detector of depth 
underwater. Thirdly, and most importantly, small reductions in R:FR caused by vegetation 
shade, or the proximity of neighbours, cause relatively large reductions in PfrlP. Thus, because 
shade R:FR values lie on the steep part of the hyperbolic curve, the phytochromes in principle 
have the capacity to be very sensitive detectors of shade. 

The Phytochrome-Mediated Shade Avoidance Syndrome 

The nature of shade avoidance reactions. The acclimative responses of herbaceous plants to 
shade from other vegetation can be viewed in terms of two extreme strategies (Grime 1979). 
One strategy, that of shade tolerance, involves relatively slow growth rates, the conservation of 
energy and resources, perennation usually by vegetative processes, and the development of 
photosynthetic structures that are especially efficient at low light levels. The opposite extreme is 
shade avoidance, a syndrome of growth and developmental changes in which extension growth 
is favoured at the expense of leaf and storage organ development. As the name suggests, if 
successful, shade avoidance has the overall effect ofprojecting the photosynthetic structures 
(usually leaves) into those parts of the environmental mosaic in which the resource oflight is 
plentiful. Shade avoiders tend to be photosynthetically inefficient at low light levels, but have 
the capacity rapidly to direct growth potential from leaf development to shoot extension upon the 
first detection of incipient shading. Shade avoidance is an effective strategy for life in an 
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herbaceous community, but has limitations for herbs growing on the floor of a dense forest. The 
two strategies, avoidance and tolerance, are not necessarily mutually exclusive, since some plants 
display intermediate strategies and appear to be able to adapt to life either in open or shaded 
habitats, whilst other plants can exhibit shade avoidance and shade tolerance at different points in 
their life cycle. 

Phytochrome-mediation of shade avoidance. When shade avoiding species are grown in white 
light to which various amounts of FR have been added, developmental responses essentially 
similar to those seen in natural canopy shade result (Morgan and Smith 1978, 1979; Smith 1982; 
Smith and Morgan, 1983; Casal and Smith 1989). Figure 3a shows the relationship between 
extension growth and the predicted PfrlP for seedlings of the shade avoiding weed Chenopodium 
album grown in cabinets in which the PAR was held uniform but the R:FR was decreased by 
supplementation with varying flux densities of FR. This figure presents the most striking effect 
of supplemental FR, which is the enhanced elongation growth at low R:FR, but all the other 
components of the shade avoidance syndrome can be induced by such decreases in R:FR. For 
example, growth in WL+FR causes a major redistribution of assimilates from leaf expansion and 
storage organ accumulation to stem and petiole grovvth (Keiller and Smith 1988). It also strongly 
accelerates flowering (Robson, Whitelam and Smith, 1993), a phenomenon as yet little studied 
but potentially of considerable importance. 

Thus, the induction of the shade avoidance syndrome requires the perception of the spectral 
changes associated with shade, rather than the changes in total light quantity. Furthermore, the 
linear relationship between extension rate and calculated phytochrome photo equilibrium (Figure 
3a) has been shown to obtain for a wide range of species (Morgan and Smith 1979), providing 
convincing evidence that the perception of shade and the induction of shade avoidance responses 
is phytochrome-mediated. In particular, the magnitude of extension growth responses to added 
FR is related to the life style of the plant; i.e., shade avoiders respond strongly, whilst shade 
tolerators respond weakly (Figure 3b) (Morgan and Smith 1979). 

Two further important characteristics of R:FR perception are its rapidity and its compensation for 
changes in irradiance. Using position-sensitive transducers to enable the continuous monitoring 
of stem extension rate, changes in extension rate caused by FR radiation applied to the growing 
internode via fibre-optic probes can be detected within minutes (Morgan, O'Brien and Smith 
1980; Child and Smith, 1987). Furthermore, within wide limits, the extension rate is determined 
by the R:FR at the internode and is independent of the flux density of white light presented from 
above (Child and Smith 1987). These results indicate that the perception ofR:FR is precisely 
quantitative and is compensated for variations in total irradiance. This means that, in principle, 
phytochrome-mediated R:FR perception should not only be able to operate at the light levels that 
exist within dense canopies, but should also function at the high irradiances present in sparse 
stands of plants that are not sufficiently close to cast actual shade. That R:FR perception does 
indeed occur at very high flux densitys was shown by Smith (1990) who observed strong 
accelerations of extension rate in mustard seedlings when exposed to high levels of FR added to 
a background white light in excess of 1500 j.lmol m-2 S-I. 
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Fig. 3. The linear relationship between PfrlP (estimated from the incident radiation spectrum) 
and the rate of stem extension growth. (a), data for Chenopodium album; (b), nonnalised data 
from a range of shade-avoiding and shade-tolerating plants. Modified from Smith (1982). 

Neighbour detection and proximitv perception. This latter point leads to the expectation that 
plants should be able to detect the FR reflected from neighbours before actual shading occurs, 
thereby providing for anticipation of competition for light. That this occurs in nature was 
suggested by Kasperbauer et al. (1984) in studies of soybeans grown in either north-south or 
east-west rows. R:FR near the top of the north-south rows of plants was lower on the west side 
in the morning, and on the east in the evening; indicating that the adjacent rows act as FR 
reflectors when the sun is low in the sky. The fact that mustard plants growing under 
background white light in growth cabinets react very rapidly to FR directed horizontally at the 
growing internodes, also indicates that plants can detect horizontally-propagated FR whilst being 
exposed to high R:FR light from above. Ballare et al. (1987, 1990) have demonstrated direct 
effects of reflected FR on plant growth in the field using seedlings of Datura forox, a strongly 
shade-avoiding herb, grown in the field close to grass screens that were either green, or bleached 
by being sprayed with a herbicide. The plants adjacent to unbleached, green hedges grew 
significantly faster than those near to the bleached hedges. Datura forox seedlings, when 
inserted into a sparse canopy of similar seedlings not dense enough to cast actual shade, grew 
faster than in the open. If their growing internodes were surrounded by transparent collars 
containing dilute copper sulphate solution (which absorbs FR), there was no increase in growth. 
Thus, phytochrome-mediated R:FR perception is sufficiently sensitive to allow the detection of 
reflected light from neighbouring vegetation. Smith et al. (1990) measured the reflection signals 
from stands of tobacco, and also measured actual PfrlP in samples of purified oat phytochrome 
exposed to the radiation reflected from the tobacco stands. These data showed that, in principle, 
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neighbour detection could operate over substantial distances, and that the signals progressively 
increased with proximity to the neighbours. In nature, therefore, plants are able to detect the FR 
reflected from neighbours even though the FR flux is a tiny fraction of that of the vertically 
propagated, high R:FR daylight. It seems that simple geometry may be responsible for this 
apparent paradox, as the most sensitive regions are the growing internodes which, for most shade 
avoiding species, are held erect, thereby receiving very little downwardly propagated radiation. 
On this basis, phytochrome-mediated R:FR perception provides plants with the capacity for 
proximity perception; in other words, plants not only can detect their neighbours, they can 
effectively perceive how far away they are, and therefore are able to gauge the competitive threat 
posed. 

In summary, plants are exceptionally sensitive to the relative amounts ofR and FR they receive. 
In nature, the shade avoidance syndrome provides plants with the capacity to adapt rapidly to the 
competitive threat posed by neighbours. In the controlled environment, manipulation of the 
R:FR ratio can give the experimenter, or the grower, impressive control over the pattern of 
development and the rate of growth. 

Implications for the Design of Plant Growth Facilities 

There are, of course, alternative ways of varying R:FR in controlled environments; one can add 
FR to a constant R, one can add R to a constant FR, or one can vary both R and FR 
simultaneously. The latter is what happens in the natural environment, but in our hands the 
objective has been to dissociate the phytochrome-mediated responses to varying R:FR, from 
any effects that might be a result of changes in photosynthetic rates caused by reduced levels 
of photosynthetically active radiation. Ideally, we would like to have growth facilities in 
which photosynthetic rate could be held uniform at high levels, whilst simultaneously varying 
the proportions of Pr and Pfr; for this reason we have concentrated on designing cabinets that 
provide a constant, uniform background of white light (and therefore constant R) whilst 
varying R: FR by adding FR. This approach inevitably carries a number of technical 
problems. 

At present, no sources are available at an affordable cost that provide high irradiance FR 
without also emitting large amounts of longer wavelength infra red. The simplest way of 
producing FR is to filter the radiation emitted by incandescent sources, but these have 
maximum emissions at ca 900 nm or higher, and put out a great deal of radiation in the longer 
wave infra red. Consequently, using such sources inevitably means that one has to remove a 
large amount of radiant heat. Because of the technical problem of dealing with this heat, until 
recently we have been forced to use cabinets in which the background WL was of relatively 
low irradiance. In our latest designs, we have developed cabinets in which high irradiance 
broad-band WL can be supplied from above, with high irradiance FR being provided 
horizontally from sources mounted in the side walls; these cabinets were built as a direct 
response to the realisation of the importance of horizontally-propagated radiation. 

Removal of radiant heat can only be achieved by absorption of the heat, followed by some 
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form of heat exchange. Our approach has been to use so-called "water windows", in which 
flowing water, cooled by passage through a heat exchanger, absorbs the radiant heat emitted 
by the incandescent lamps used to provide the FR. Following radiant heat absorption, the FR 
is selected by the use of Perspex (plexiglass) filters. The design and construction of effective 
water-windows is by no means a trivial exercise, and when a window fails, the close proximity 
of gallons of water to high voltage circuitry can yield impressive pyrotechnic displays. 
Nevertheless, with appropriate fail-safe devices and controls, water windows can ~e reliable 
and safe, although the cost would be prohibitive for standard growth cabinets. With this 
approach we have been able to develop cabinets in which upwards of 500 mol ffi-. s·· FR can be 
added to background WL of between 150 mol m~ s·· PAR (old designs) and 400 mol m' s·· PAR 
(new design). In the latest side-wall FR cabinets, we can provide 500 mol m-2 ~-1 FR from the 
side and up to 900 mol m-2 S-1 PAR from above. The latest cabinets were designed by us and 
constructed to an extremely high degree of excellence by Vindon Scientific Ltd., based near 
Oldham in the UK. Figure 4 shows the essential features of the latest set of Vindon cabinets, 
and the legend includes the contact person and the address of the company . 

..-ce HiM, Me 

WAlBIk 

Fig. 4. A schematic diagram of a plant growth cabinet designed to provide high flux density 
white light from above which can be supplemented with high flux density FR radiation either 
from above, or from the sides. Removal of the FR filters from the upper lighting 
compartment provides a white light spectrum that simulates daylight reasonably well, provides 
a flux density of 900 mmol ffi-. s·· at 1 m from the compartment window, and has a R:FR ratio 
of ca 1.5. Radiant heat is removed by 'water windows', containing running water cooled by 
external refrigerating heat exchangers. The flux density of FR that may be supplied, either 
from above or the sides, is ca 500 mmol m· S·'. This cabinet allows the possibility to grow 
plants in high flux density white light from above but to establish varying phytochrome 

65 



photoequilibria by supplementation with FR from the sides. (Further details of these cabinets 
may be obtained from the author, or from the manufacturer, by contacting Mr Alan Roylance, 
Vindon Scientific Ltd., Diggle, nr Oldham, Lancashire, UK). 

Bringing water and electricity close together should, of course, be avoided. If other sources of 
high irradiance FR were to become available (Le., discharge lamps, LEDs, micro-wave-driven 
sources, etc.) at a reasonable cost, then the design of cabinets that allow the simulation of 
natural R:FR ratios whilst simultaneously providing satisfactory photosynthetic rates would be 
simplified, and a major improvement in growth cabinet design could be contemplated. Both 
growers and experimenters would then be able to achieve much better control of the growth 
and development of their plants. 
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mSTORY AND APPLICATIONS IN CONTROLLED ENVIRONMENTS 

R. J. Downs* 

North Carolina State University, Southeastern Plant Environment Laboratory, Raleigh, NC 

INTRODUCTION 

The widespread application of electric (often called artificial) light in greenhouses, growing 
rooms, and plant growth chambers would presuppose that the role of phytochrome would be 
considered in the selection and use of such lighting systems. Unfortunately this is not usually 
the case. Part of the problem is that many students, and indeed an unfortunate number of 
senior scientists, seem to regard phytochrome as a laboratory phenomenon without much 
application in the real world. They simply have not grasped the concept that phytochrome is 
functioning through all stages of plant development, wherever plants are grown. It is certainly 
true, as Meijer (1971) stated, that one cannot compare experimental results obtained under 
very strict laboratory conditions with plant irradiation in glasshouses and in growth rooms. 
For example, the action spectrum for flowering of the long-day plant, Hyoscyamus niger, 
(Parker et al., 1950) clearly shows that red radiation is the most efficient portion of the 
spectrum for promoting flower initiation, but in practical photoperiod control red or 
fluorescent lamps do not promote flowering nearly as well as the mixture of red and far-red in 
incandescent lamps. Nevertheless, much evidence exists that documents phytochrome control 
of plant growth and development in controlled environments and under natural conditions. 

When Karl Norris developed the first practical portable spectroradiometer about 1962 some of 
the first measurements were to determine the red/far-red ratios under tree canopies (Downs 
and Hellmers, 1975). These measurements showed clearly the predominance of far-red in the 
understory and suggested that far-red was contributing to the elongation exhibited by many 
species growing in the shade, and possibly was a factor in the induction of light requirements 
in seeds. Subsequently we used Catalpa leaves as far-red filters to make light-insensitive 
lettuce seed light requiring. Much more detailed work, as reported in the preceding paper, has 
since been done on phytochrome effects in the natural environment, and it is encouraging to 
note that efforts are bring made to apply phytochrome research to horticulture (Decoteau, et 
aI., 1993). 

GREENHOUSES 

As everyone interested in photoperiodism knows, L.R. Bailey (1891, 1892, 1893) used light 
from a Brush carbon-arc lamp to supplement natural light and extend the day in greenhouses. 
This was not; however, the first attempt to study the effects of electric light on plant growth. 

"The research reported in this publication was funded by the North Carolina Agricultural 
Research Service. 
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Carbon lamps· were used by Mangon (1861), and carbon arc lamps operated from steam or 
Otto gas engine driven Siemens, Grammes, or Alliance dynamos were used as early as 1853 
and later by Siemens (1881), Deherain (1881), and Bonnier (1895). Prillieux (1869) 
investigated the effects of Drummond's lamp·· and gas light used for ordinary lighting on plant 
growth. Later Welsbach mantle incandescent gas light lamps··· (Corbett, 1899), neon 
(Hostermann 1922; Roodenburg, 1933), incandescent-filament lamps (Rane, 1894; Tjebbes 
and Uphof, 1921; Harrington, 1926; Truffaut and Thurneyssen, 1929), and quartz mercury 
lamps like the Cooper-Hewitt Uviarc were used for greenhouse supplementary light. Several 
early researchers noted the elongating effects of the greenhouse supplementary light, especially 
when incandescent-carbon or incandescent-filament lamps were used (Bonnier, 1895; Massart, 
1920; Ramaley, 1931). Use of the term supplementary light (to supply what is lacking) is 
somewhat confusing, because in many cases the supplementary light was used continuously, 
throughout the night (Hostermann, 1922; Harrington, 1926), or only during the dark period 
(Cathey and Campbell, 1975), rather than as a supplement to natural light. In these studies, at 
least some of the growth effects reported are surely due to a response to the extremely long 
photoperiods, to end-of-day photomorphogenic effects, and to root zone warming rather than 
to additional photosynthesis. 

Using artificial light, usually from incandescent-filament lamps, for deliberate photoperiod 
control was initiated by Garner and Allard (1920) and was soon followed by many others. As 
photoperiod control became a production tool for floriculture and plant breeding, the more 
efficient fluorescent lamps were installed in a number of commercial greenhouses, often with 
unfortunate results; specifically failure or delay of flowering in long-day plants. Borthwick and 
Parker (1952) investigated this problem by comparing several kinds of fluorescent lamps, 
including special phosphor lamps, to incandescent lamps for efficiency in extending the 
greenhouse day to promote flowering of long-day plants. Annual beet and sugar beet flowered 
poorly or not at all under daylength extensions with any kind of fluorescent lamp, but flowered 
promptly when incandescent-filament light was used (Table 1). Although aden, et al. (1932), 
Rasumov (1933), and Wenger (1934) had noted that the long wavelengths of light were 
necessary, or at least promotive, to normal flower stalk development, red radiation was 
considered the principal part of the spectrum controlling flowering. The action spectrum data 
probably influenced Borthwick and Parker (1952) to suggest that the much greater responsive
ness of plants to light from incandescent-filament than from fluorescent lamps was because the 
incandescent emitted a much greater percentage of red radiation than the fluorescent lamps. A 
few years later, of course, it was firmly established that the far-red emittion, or the lack 
thereof, had a strong influence on the response of plants to photoperiod control lighting. 

'This was probably the Robert's lamp introduced in 1852 in which a graphite rod was heated 
to incandescence in a vacuum or later in a nitrogen atmosphere. 

"Drummond's lamp, invented in 1826, heated a button of calcium oxide to incandescence. 
The resulting light was usually projected as a beam. 

'''Patented in 1886, Welsbach mantle lamps were made with a cotton wick impregnated with 
thorium oxide and a small amount of cerium oxide. 
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TABLE 1. Effect of light source on flowering of beets. (Borthwick and Parker, 1955) 

Photoperiod Control 
Light Source 

Incandescent 

Fluorescent 
Warm White 
Soft White 
Cool White 
Daylight 
Agricultural * 

Annual Beets 
Seed Stalks 

(per lot of 20) 

19 

3 
1 
1 
2 
4 

* Agricultural lamps emitted more red than the white lamps. 

Sugar Beets 
Flower Stalks 
(per lot of 12) 

11 

o 
o 
o 
o 
o 

Many subsequent studies of photoperiodism compared day length extensions obtained with 
fluorescent or incandescent light. Compared to fluorescent, the incandescent extension induced 
increased stem length in evergreen and deciduous tree species as well as herbaceous species 
such as tomato and soybean, promoted heading in millet, barley, and wheat, induced earlier 
flowering in Hyoscyamus niger, Petunia, dill, and other long-day species (Downs, et al., 1958; 
Downs and Hellmers, 1975; Vince-Prue, 1975), and produced greater pod set in H. niger 
(Table 2). Bulbing of onions was promoted by incandescent photoperiod control lighting and 
failed to occur when fluorescent was used (Woodbury and Ridley, 1969). Fluorescent 
photoperiod lighting failed to inhibit flowering of red-insensitive soybean varieties (Table 3), 
and when using photoperiod light to make a 13.5 h day for the most normal rate of 
reproduction in Ransom soybeans, incandescent lamps resulted in more pods than fluorescent 
lamps (Table 4). 

TABLE 2. Reproduction of Hyoscyamus niger as affected by the source of light used to 
extend an 8-hour day in the greenhouse to 16 hrs. 

Photo-period Light Source Duration Stem Length Time to Fruit Set 
(h) (d) (cm) Anthes is (%) 

(d) 

8 none 61 0.2 Vegetative 0 
16 Incandescent 52* 42 27 66 
16 Fluorescent 61* 34 36 12 

* Anthesis plus 25 days 
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TABLE 3. Growth and reproduction of Blackhawk soybeans after 60 days under short days 
with various daylength extensions using incandescent or fluorescent light. 

Light Regime Stem Length Days to Pods > 2 cm in Length 
(cm) Anthes is Number Weight (mg) 

9h 37 28 27 745 
20 h Incandescent 160 60 0 0 
20 h Fluorescent 73 32 50 959 
20 h Incandescent 

and Fluorescent 168 58 0 0 

TABLE 4. Effect of the source of photoperiod control lighting on growth of Ransom 
soybeans in temperature-controlled greenhouses. 

Light Source Stem Length Leaf Area Fresh Pod Number Pod Weight 
(cm) (cm2) Weight (g) 

(g) 

Incandescent 68 4859 178.9 77 0.926 

Fluorescent 42 2926 88.6 66 1.112 

After the far-red reversibility of the red inhibition of hypocotyl growth in dark-grown 
seedlings was established (Downs, 1955), it was of interest to determine if this reversibility, 
and its confirmation of the activity of phytochrome, was also evident in internode growth of 
light-grown plants (Downs, et aI., 1957). Irradiating bean plants for brief periods at the 
beginning of each dark period with far-red, so that the plants entered the dark period with 
phytochrome predominantly in the red-absorbing form, resulted in a large increase in 
internode length. The amount of elongation was proportional to the dark period remaining 
after the irradiation and was reversible by a subsequent exposure to red. Additional studies 
showed that what is now called 'end-of-day' far-red produced similar effects on most other 
bean varieties, sunflower, peanut, and morning glory. Also, end-of-day far-red promoted 
flowering of long-day plants, like dill, and short-day plants, such as millet (Downs, 1959) and 
milo (Lane, 1963), and had a marked effect on flowering of H. niger (Table 5). Extending the 
day with incandescent light is in effect providing end-of-day far-red, and the far-red effect 
becomes greater as the duration and irradiance of the incandescent light in increased. 
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TABLE 5. Effect of a long-day induction period with fluorescent light on promotion of 
flowering in Hyoscyamus niger by far-red at the close of 8-hour post-induction light periods. 

lO-day Post-induction Stem Length Stage of 
Pretreatment Far-red (mm) Flowering 
Photoperiod (mins) 

8h 0 0 0.0 
8h 5 0 0.0 

16 h 0 13 3.0 
16 h 5 43 6.0 

High intensity discharge lamps are now widely used in greenhouses to supplement the low 
natural light levels of winter (Templing and Verbruggen, 1975; Duke, et aI., 1975). Some 
researchers also use HID lamps, especially high pressure sodium (HPS) lamps, for 
photoperiod control lighting to prevent dormancy and to promote flowering of long-day plants. 
HPS lamps, however, are reported to be much less efficient than incandescent lamps, requiring 
a 4 to 8 fold increase in irradiance to provide the same photoperiodic stimulus as the 1: 1 
red/far-red ratio· of incandescent lamps (Cathey and Campbell, 1964). In fact, the benefits of 
HPS supplemental light is enhanced by the addition of some incandescent lamps (Cathey and 
Campbell, 1977). 

Today the incandescent lamp remains the chief source of light for photoperiod control because 
it is well established that a red/far-red ratio of 0.671·· is more effective than the 7.6969 ratio 
from fluorescent or the 2.7 of HPS and 2.5 ratio of MH high intensity discharge lamps. 

PLANT GROWTH CHAMBERS 

Early attempts to use electric lamps as the sole source of light for plant growth chiefly used 
nitrogen-filled incandescent-filament lamps, the Mazda C lamp (Harvey, 1922; Maximov, 
1925; Davis and Hoagland, 1928; Sande-Bakhuyzen, 1928; Redington, 1929; Truffaut and 
Thurneyssen, 1929; Stoughton, 1930; Arthur et aI, 1930; Steinberg, 1931; Bracket and 
Johnston 1932; Johnston, 1932; Wilson, 1937; Wettstein and Pirschle, 1940), although some 
of these efforts utilized neon, low-pressure sodium, mercury tungsten, mercury arc, mercury 
vapor, or carbon-arc light, alone or in conjunction with incandescent lamps in order to 
increase the illuminance (Roodenburg, 1931; Johnston, 1938; Steward and Arthur, 1934; 
Weigel and Knoll, 1936; Pirschle and Wettstein, 1940; Ullrich, 1941; Aberg, 1941, 1943). 
Several of these examples where incandescent light was used noted excessive stem elongation. 
Roodenburg (1940) stated that near infra red produces a specific elongation effect and Aberg 
(1943) in noting the elongation that occurred, concluded that "The infra-red rays of shorter 

"The red/far-red ratio of incandescent lamps is more nearly 0.67 than 1 

"640-6601720-740 nm 
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wavelength that penetrate a layer of water 3 cm in thickness probably have afavorable effect 
on the internode elongation in the tomato plant. /I 

In addition to the etiolation, a major problem with these early efforts was the low light level, 
equivalent to about 160 p.mols m-2 

S-l and often less, generated by these lamps. In order to 
obtain a higher illuminance, Mitchell (1935) installed a new type, high intensity, carbon-arc 
lamp for respiration and photosynthesis studies. These lamps had been designed for use in 
hospital solaria to treat extrapulmonary tuberculosis patients. Gains made by the patients 
during summer exposure to sunlight were lost during winter months due to low light levels and 
cloudy days. Clinical sunlight, recommended at 140-160 mW m-2 between 290 and 310 nm, 
could be and was supplied by these carbon arc lamps (Grieder and Downes, 1932). 

E.J. Kraus and Jack Mitchell left the University of Chicago about 1935 to join the Beltsville 
photoperiod project. Thus it was probably at their recommendation that the four temperature
and humidity-controlled plant growth chambers that were installed at Beltsville about 1937 
were equipped with these carbon-arc lamps . Soybeans grown under the arc lamps consistently 
had a lower carbohydrate content than plants grown in the greenhouse. Parker and Borthwick 
(1949) concluded that the low carbohydrate level probably resulted from the small amount of 
red radiation emitted by the 'Sunshine' carbons in these carbon-arc lamps. So the following 
year they installed incandescent lamps that provided 8 to 10% of the illuminance of the arc 
lamp to provide additional red radiation. Soybeans grown under carbon-arc light plus 
incandescent revealed an increase in starch and sugars that could not be accounted for by the 
small increase in illuminance (Table 6). In retrospect it seems strange that Parker and 
Borthwick (1949) would attribute these gains to the increase in red due to the incandescent 
since a much larger increase in red obtained by using a different type carbon, .025 carbons, 
had very little effect. (Table 6). 

TABLE 6. Carbohydrate composition of Biloxi soybeans grown for 4 weeks under a carbon
arc lamp utilizing different carbon types, with and without incandescent lamps. (parker and 
Borthwick, 1949) 

Carbon Type Red Reducing Sugars Sucrose Starch 
%* 

(mg per plant) 

Sunshine Carbons 42 32.5 6.6 39 

Sunshine Carbons 
+ Incand. 

49 73.0 14.0 70 

Sunshine Carbons 
+ 025 Carbons 51 45 8.0 36 

* 650 nm as percent of 450 nm radiation. 



These carbon arc/incandescent lighted chambers were kept in almost continuous use for over 30 
years, but operational and maintenance problems induced Parker and Borthwick (1950) in 1947 
to begin planning a controlled-environment room lighted with fluorescent lamps. Several years 
earlier fluorescent lamps had been tested satisfactorily for plant growth (Naylor and Gerner, 
1940; Hartmann and McKinnon, 1943; Hamner, 1944; Went, 1944), but the low illuminance 
available from these lamps was inadequate for controlled-environment rooms. The introduction 
of the 8 ft. slimline lamp following World War IT seemed to provide a means of obtaining 
sufficient illumination for plant growth over relatively large areas, especially when the lamp 
current was increased from 200 to 300 rnA. During the design phase of this room, Parker 
compared plant growth under slimline fluorescent with and without incandescent supplementary 
light. As with the carbon-arc lamp rooms, the avowed purpose of the incandescent lamps was 
to increase a possible deficiency of red radiation. The supplementary incandescent light resulted 
in an 18% increase in dry weight. Withrow and Withrow (1947) had reported that adding 
incandescent to fluorescent light increased yield, and later reports verified the increased growth 
due to added incandescent light (Dunn and Went, 1959; Helson, 1965; Deutch and Rasmussen, 
1974; Cathey et aI, 1978). Dunn and Went (1959) noted that the effect of adding 10% of the 
fluorescent illuminance with incandescent was no greater when added to red fluorescent than to 
blue fluorescent, concluding that "while the most obvious explanation is that the effect is due to 
the infra red radiation of the incandescent lamps, it is unlikely that the far-red and infra red 
rays of the incandescent light was responsible (for the increased growth) since they would have 
been more effective when added to blue than to the red fluorescent light". 

Parker planned additional experiments to evaluate the plant growth effectiveness of various 
kinds of fluorescent lamps, including experimental lamps with special phosphors like the 
Agricultural, and to examine other quantities of incandescent supplementary light. The results 
of these studies were never published, but when the fluorescent-lighted room was completed 
about 1950 it contained cool white fluorescent and incandescent lamps that provided about 1 0 % 
of the illuminance of the fluorescent lamps. In order to facilitate future plant growth chamber 
construction, Joe Ditchman, a GE engineer assigned to biological lighting development, 
calculated that 10% of the illuminance of the slimline fluorescent lamps could be obtained by 
installing incandescent lamps at the rate of 30% of the fluorescent wattage. Due to lack of data 
on plant response to other levels of incandescent supplementary light, this value, 30% of the 
installed fluorescent watts, became a guideline for use in growth chamber design. The validity 
of this percentage, of course, was lost as designers increased the efficiency of the fluorescent 
lamp. For example about 1963, a chamber was constructed at Beltsville using 1500 rnA, non
circular cross section, fluorescent lamps and, while the incandescent effect was still apparent at 
light levels as high as 500 JLmols m-2 S-l (Table 7), increasing the intensity of the main light 
source decreases the incandescent effect of the I standard I incandescent installation. This fact 
was also noted by Meijer (1957) and Sanchez and Cogliatti (1975). Thus it is not surprising to 
find that increasing the percentage of incandescent watts increases the incandescent effect in 
chambers lighted with 1500 rnA lamps (Krizek and Ormrod, 1980; Murakami, et aI., 1991). 
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TABLE 7. Effect of radiation from incandescent lamps during the fluorescent light period on 
growth of Ransom soybeans after 32 days 

Main Axis Branches 

Light Source Length Leaf Area Number Leaf Area 
(cm) (cm2) (cm2) 

Fluorescent 77 1235 8 1993 

Fluorescent plus 93 1410 5 1622 
Incandescent 

In addition to increased plant weight (Rajan, et aI., 1971; Deutch and Rasmussen, 1974; Hurd, 
1974), the addition of incandescent light to the fluorescent system also resulted in increased 
flower weight and number of florets in Chrysanthemum, while reducing the number of days 
required to develop flower color (Hassan and Newton, 1975) and improved flowering of long
day plants (De Lint, 1958; Friend et aI1961; Dietzer et aI, 1979). The incandescent light may 
also increase stem elongation, alter leaf area, and reduce branch and tiller development (Rajan, 
et aI., 1971; Summerfield and Huxley, 1972; Proctor, 1973; Deutch and Rasmussen, 1974; 
Downs and Thomas, 1990; Casal, et aI., 1985). Moreover, if the incandescent and fluorescent 
lamps are not turned off simultaneously a substantial, often undesirable, stem lengthening can 
occur (Table 8) that may not be recognized by many plant growth chamber users as an end-of
day far-red effect. With some plants incandescent light is essential for normal plant 
development (Friend, et aI., 1961), but it is also clear that with other plants incandescent light 
is a major factor in the inability to simulate the field phenotype (Tanner and Hume, 1976). 

TABLE 8. Effect of light quality for a 30 minute period after the close of the high-intensity 
light period on growth of tobacco seedlings. 

Variety 

Coker 319 

NC2326 

Light Source 

Fluorescent 
Incandescent 

Fluorescent 
Incandescent 

Stem Length 
(cm) 

6.3 
13.7 

5.7 
10.0 

Length 
(cm) 

9.7 
10.0 

9.0 
10.2 

Fifth Leaf 

Width 
(cm) 

16.2 
19.7 

15.8 
19.5 

While fluorescent-lighted chambers have been constructed without incandescent supplemental 
light (Doorenbos, 1964), the advantages of using the incandescent to increase growth, 
accelerate flowering in long-day plants, control flowering in red-insensitive varieties, and 
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produce end-of-day far-red effects makes their addition in fluorescent-lighted plant growth 
chambers extremely useful and in some cases indispensable. For example tissue cultures of 
Loblolly pine fail to differentiate without incandescent light added to the fluorescent system. 

In other cases where the incandescent supplemental light is a detriment to obtaining the growth 
or plant habit desired, the problem can be solved, in soybeans at least, by utilizing correct 
photoperiod regimes and/or using the incandescent lamps correctly (Downs and Thomas, 
1990). In other examples of inadequate plant development, the incandescent lamps can be easily 
turned off. 

HIGH INTENSITY DISCHARGE LAMPS 

High intensity discharge lamps in the form of mercury or phosphor-coated mercury (sometimes 
called mercury-fluorescent) lamps were added to the fluorescent-incandescent system as early as 
1955 (Oda, 1962). The development of similar systems by others soon followed (Leiser, et aI., 
1960; Yamamoto, 1970); each apparently without knowledge of the other installations. 
Chambers lighted solely with phosphor-coated mercury lamps also were constructed 
(Bretschneider-Hermann, 1964; Chandler, 1972; Smeets, 1978), but the low efficiency of these 
lamps limited their use. When the highly efficient metal halide lamps were introduced, plant 
growth chamber designers quickly incorporated them into new chambers (Nakamura, 1972; 
Kawarda and Shibata, 1972; Warrington, et aI., 1976; Eguchi, 1986) and ultimately retrofitted 
them into older chambers (Downs, 1988). The further increase in light-producing efficiency 
achieved by the introduction of the high pressure sodium lamp about 1965 resulted in a number 
of trials with this light source (Downs and Hellmers, 1975). In our studies, HPS proved less 
than satisfactory as a sole source of light for field crop plants, but plants grew well when 
irradiated with a 1: 1 mixture of mercury, or metal halide and HPS. In contrast to our earlier 
results, Smeets at Wageningen designed a 100 m2 room with only HPS lamps that appears to 
provide satisfactory growth of several floricultural crops (personal observation). 

Although HID lamps can provide the same irradiance as fluorescent lamps at a substantially 
reduced power requirement, the chief reason for using them seems to be to increase the PPFD 
above that normally available from fluorescent lamps. An exception is the work at the Climate 
Lab in New Zealand, which was primarily interested in obtaining a spectral distribution 
equivalent to sunlight including an appropriate red/far-red ratio (Warrington, et aI., 1976; 
Warrington, et aI., 1978), and was only secondarily interested in super high light levels. 
Today we see chambers being constructed with light levels equalling or exceeding peak solar 
radiation. The reason given for the high irradiance is usually that it is necessary for simulating 
field studies. It would seem that the RlFR ratio of natural light would also be a requirement 
for simulating field studies, but this subject is rarely encountered in arguments for artificially
produced solar irradiance levels. The spectral distributions of the tin chloride lamp, which was 
never produced commercially, and the Tungsram daylight metal halide containing dysporsium 
(Tischner and Vida, 1981) come very close to matching the natural light spectral distribution. 

A question that arises frequently in the design of HID-lighted growth chambers is whether 
incandescent lamps should be added. Tibbitts, et aI., (1987) reported that incandescent lamps 
had little to no effect on growth of mustard and wheat when they were added to high intensity 
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discharge lamps. However, there was a small but significant increase in soybean vegetative 
growth (Fig, 1), and Casal, et al. (1985) reported that incandescent light reduced tillering and 
advanced reproductive development in Lolium. 

MH + HPS MH + HPS + Inc 

Fig. 1. Schematic of Ransom soybean growth after 30 days under a 1: 1 ratio of high pressure 
sodium and metal halide lamps with and without incandescent. 

We originally assumed that the lack of far-red effect when incandescent lamps were added to 
HID-lighted chambers was due to the higher HID irradiance. This is not a satisfactory 
explanation, however, since a marked far-red effect failed to be discemable at HID light levels 
comparable to fluorescent-lighted rooms (less than 500 /Lmols m-2 S-l). Part of the problem 
seems to be that incandescent lamps provide red as well as far-red;and thus, the net increase in 
far-red relative to red is not as great as might be assumed. For example, the red/far-red ratio in 
a reach-in chamber lighted with 16, 115-W VHO fluorescent lamps was 6.684. Adding 
incandescent at an input wattage of 33 % of the installed fluorescent watts reduced the RlFR 
ratio to 1.884. When we retrofitted this chamber with HID lamps the RlFR ratio was 2.526 
with MH and 2.749 with a 1: 1 mixture of MH and HPS lamps. Adding incandescent decreased 
the ratio to 1.7 and 2, respectively. These ratios are similar to those from fluorescent
incandescent systems but the far-red effect is much less. 

In part, this lack of an incandescent effect can be alleviated by increasing the incandescent lamp 
wattage (Warrington, 1978) to equal that of the HID lamps. While a properly designed reflector 
and ventilation system can remove the thermal radiation from the HID lamps (Downs, 1989), 
the large amount of long wavelength radiation resulting from such a large wattage of 
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incandescent lamps makes a water filter essential. Unfortunately, the water filter is often not 
practical because it increases design costs and requires much more maintenance than the typical 
lamp loft barrier. The heat removal problem might be avoided by adding far-red without any 
increase in red radiation. In theory this could be done by using blue incandescent lamps which 
have a red/far-red ratio of 0.004 compared to the 0.671 of white incandescent ones, but in 
practice the far-red effect from blue incandescent lamps added to HID lamps is about the same 
as with white incandescent lamps. 

Plants grown under HID lamps often produce abnormally short internodes, a fact observed by 
Warrington et al (1978), even when incandescent lamps were added. End-of-day exposures to 
incandescent lamps can be used as a tool to increase internode lengths to more acceptable 
values (Table 9). End-of-day irradiations with blue incandescent lamps, however, produce 
excessive elongation. (Table 10). Also, using the incandescent lamp for dark period 
interruptions, as an end-of-day treatment, or for daylength extensions can accelerate flowering 
of many long-day plants and control flowering of red-insensitive soybeans. The evidence seems 
to favor the addition of incandescent lamps to HID systems. 

TABLE 9. Oregon 91 snapbeans grown under MH and HPS lamps with and without 30 min 
end-of-day incandescent irradiation. 

Light Source 

Incandescent 

No Incandescent 

Stem Length 
(cm) 

31.0 

11.4 

Branch Length 
(cm) 

33 

19 

Leaf Area 
(cm-2) 

814 

626 

Top Weight 
(g) 

32.86 

25.78 

TABLE 10. Seneca chief squash grown under MH and HPS lamps with 15 min. end-of-day 
exposures to white or blue incandescent lamps. 

Length 

Light Source Hypocotyl Stem Petiole Leaf Area Top Weight 
(cm) (cm) 1st Leaf (cm2) (g) 

White 1.6 2.7 12.8 514 26.53 
Incandescent 

5.3 7.6 29.4 388 32.77 
Blue 
Incandescent 
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And thus, it is recommended that the design and construction of plant growth chambers 
continue to contain a provision for utilization of the incandescent lamp as part of the total 
irradiance system, to be implemented at the discretion of the investigator to meet the 
phytochrome requirements of the various biological organisms that may be grown in the 
chamber. 
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PLANT PHOTOMORPHOGENESIS AND CANOPY GROWTH 

Carlos L. Ballarc~ and Ana L. Scopel 
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Av. San Martin 4453, (1417) Buenos Aires, Argentina. 

INTRODUCTION 

An important motivation for studying photomorphogenesis is to understand the relationships 
among plant photophysiology in canopies, canopy productivity, and agronomic yield. This 
understanding is essential to optimize lighting systems used for plant farming in controlled 
environments (CE) and for the design of genetically engineered crop strains with altered 
photoresponses. This article provides an overview of some basic principles of plant 
photo morphogenesis in canopies and discusses their implications for (1) scaling up 
information on plant photophysiology from individual plants in CE to whole canopies in the 
field, and (2), designing lighting conditions to increase plant productivity in CE used for 
agronomic purposes [e.g. space farming in CE Life-Support-Systems (Bugbee and Salisbury 
1989)]. We concentrate on the visible (A. between 400 and 700 nm) and far red (FR; A.> 700 
nm) spectral regions, since the ultraviolet (UV; 280 to 400 nm) is covered by other authors in 
this volume. 

NEIGHBOR DETECTION IN PLANT COMMUNITIES 

The spectral distribution of sunlight changes dramatically as the light beams interact with 
vegetation. Light is strongly scattered inside plant tissues, and leaf pigments absorb most of 
the UV and visible parts of the spectrum. In contrast, relatively few FR quanta are absorbed, 
and most of them exit plant organs in the form of scattered radiation. Therefore, within plant 
canopies the light climate is characterized by low levels of blue (B) and red (R) light (the 
visible wavelengths that are most absorbed by chlorphylls) and high levels of FR. 

Changes in R:FR ratio are used by plants to monitor the proximity of neighboring individuals 
(for reviews, see Ballare et al. 1992h, Sanchez et al. 1993, Ballare 1994). R:FR sensing by 
phytochrome was originally proposed as a mechanism for the perception of leaf shading by 
seeds and plants occurring underneath vegetation canopies (Taylorson and Borthwick 1969). 
Thus, variations in R:FR caused by preferential absorption of R light by chlorphylls would 
shift the amount of phytochrome present as Pfr in plant tissues. This change in the amount of 
Pfr would provide a cellular signal that, being related to the degree of shading, could be used 
by plants in the understory to control developmental timing and morphogenesis. This idea has 
been supported by spectroradiometric studies in plant canopies (e.g. Kasperbauer 1971, 
Holmes and Smith 1977) and physiological experiments in CE (Taylorson and Borthwick 
1969, Morgan and.Sqlith 1978, Child and Smith 1987). 

On the basis of field studies on the early development of seedling canopies, it was later 
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postulated that FR light, back-scattered by neighbors, may provide to each individual seedling 
an "early-warning signal" of impending competition, before the onset of severe shading 
among plants (Ballare et al. 1987). Figure 1 shows how light scattering by plant tissues 
increases the fluence rate of FR received by vertically-oriented internodes as the leaf area 
index of a seedling canopy is increased, and how this spectral shift precedes variations in 
photosynthetically active radiation (PAR) at the leaf level. The ability of plants to remotely 
detect their neighbors using the R:FR spectral shift has now been demonstrated using a suite 
of experimental approaches, which involved manipulations of the light environment received 
by isolated plants growing under natural radiation (e.g. Ballare et al., 1987, 1991£!, Casal et al. 
1987, Novoplansky et al. 1990), manipulations of the light environment in plant canopies 
(Casal et al. 1986, Ballare et al. 1990), and the use of mutants deficient in R:FR sensing 
(Ballare et al. 1992.a, Casal and Kendrick 1993) . 
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Fig. 1. Effects. of increasing the leaf 
area index (m2leafarea I m2

sOil arcJ in 
even-height canopies of 
dicotyledonous seedlings on light 
interception by leaves (top) and the 
light climate of the stems. The 
integrating cylinder collects 
sidelight received by the stem 
surface; the fiber optic probe 
collects light scattered within the 
stem tissue. All values are given 
relative to the measurements 
obtained for isolated plants or for 
leaf area index ;:;; 0 (boxed 
symbols). Abbreviations: B, blue; 
FR, far-red; PAR, 
photosynthetically active radiation; 
R, red. (From Ballare 1994; original 
data in Ballare et al. 199112.). 

Changes in photon fluence rate can 
also convey information about the 
proximity of neighbors in plant 
canopies. For plants growing 
underneath other vegetation, a 
change in the leaf area index of the 
canopy will cause variations in 
irradiance that plants may use as an 
input signal for the systems that 
control shade acclimation at 
different levels, from chloroplast 
physiology to whole-shoot 



allometry (e.g. Blackman and Wilson 1951, Bjorkman 1981). Moreover, changes 
in light fluence rate may also work as early proximity signals in even-height canopies of 
broadleaf seedlings (Ballare et al. 1991ill, because fluence rate sensed by vertically-oriented 
stems is more affected by changes in canopy density than the light climate of horizontal or 
diaphototropic leaves (Fig. 1). 

Plants can "measure" fluence rate in two ways: (1) indirectly, by sensing changes in the 
availability of photosynthetic products (sugars), or (2) more directly, by sensing molecular 
signals closely related to the photoexcitation of the chloroplast photosystems or other 
photoreceptors (e.g. B-absorbing photoreceptors and phytochromes). Morphological responses 
to sucrose levels have been demonstrated (Montaldi 1969, Casal and Sanchez 1992) and 
changes in ATP and NADPH production (caused by variations of light intensity) may elicit 
changes in photosystem stoichiometry and organization, with consequences on photosynthetic 
capacity have been reported (Chow et aI. 1990). Morphological responses to irradiance 
changes sensed by phytochrome (Ballare et al. 1991ill and a B-absorbing photoreceptor (Britz 
1990) have been extensively documented in studies with de-etiolated plants grown under high 
PAR. Experimental evidence supports the notion that plants growing in canopies use fluence 
rate signals perceived by these photoreceptors in the process of neighbor detection, and 
respond with morphological changes that presumably improve their light-harvesting ability in 
crowded populations (see below). 

INFORMATION AND VEGETATIVE MORPHOLOGICAL DEVELOPMENT 

Plants have evolved molecular mechanisms that use information about the canopy light 
environment, obtained through photoreceptors, to "decide" among alternative developmental 
programs. In this section we will briefly consider developmental photoresponses that involve 
changes in: (1) the rate of growth in height, and (2) the direction of vegetative spreading. 

Reductions of R:FR promote stem elongation rate. This has been demonstrated for plants that 
received low levels of visible light (ca. ~ 10 % of full sunlight, Kasperbauer 1971, Morgan 
and Smith 1978, Child and Smith 1987), and plants grown under natural radiation 
supplemented with FR provided by selectively-reflecting mirrors (Ballare et aI., 1987, 1991ill. 
Manipulative experiments with even-height canopies of seedlings have shown that the 
reduction in R:FR of the scattered radiation that impinges laterally on the internodes (Fig. 1) 
can trigger an increase in elongation rate, even if most of the leaf area is exposed to full 
sunlight (Fig. 2; Ballare et aI. 1990). Although direct evidence is still lacking, most of the 
physiological data suggest that the decrease in fluence rate experienced by plant stems when 
the canopy begins to close (Fig. 1; leaf area index ~ 1) does elicit an increase in elongation 
rate before shading at leaf level becomes significant (Ballare et aI., 1991ill. The increase in 
elongation rate triggered by R:FR and fluence-rate signals is almost certainly beneficial for 
the individual plant, because, in a rapidly growing canopy, a small difference in height would 
imply an inordinately large difference in PAR harvesting (e.g. Ballare et aI., 1988). 

As they grow in a heterogeneous canopy, plants can acquire information about the spatial 
distribution of their neighbors using fluence rate and R:FR signals perceived by phytochromes 
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and B-absorbing photoreceptors. Irradiance gradients elicit phototropic movements of plant 
leaves (Koller 1990) and stems (Iino 1990), which presumably increase the light harvesting 
capacity of plant shoots in horizontally patchy canopies. Novoplansky et al. (1990) suggested 
that seedlings of the plageotropic herb Portulaca oleracea use alterations in the R:FR ratio of 
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Fig. 2. Elongation responses of Datura ferox first internodes when seedlings were placed in 
the center of an even-height canopy of leaf area index;:; 0.9 under natural radiation. During 
the experiment, which run for 3 days, the internodes were surrounded by annular cuvettes 
containing distilled water (clear filter) or a CuS04 solution that absorbed FR radiation and 
maintained the R:FR ratio at ca. 1.1 (FR-absorbing filter). (Adapted from Ballan~ et al. 1990.). 
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Fig. 3. Effects of the proximity of a green maize canopy and B-absorbing acetate filters (B 
barrier) on the orientation of the hypocotyls of WT and lh-mutant seedlings. Seedlings were 
grown in the field for 2 days at the center of a clear plot (isolated) or 8 cm to the south of 
the edge of a dense maize crop (canopy). Seedlings of the lh-mutant do not present 
phototropic responses to R:FR gradients, but display normal phototropism in response to B 
light. All the southward (Le. "neighbor-avoiding") bending induced by the nearby maize 
canopy can be abolished by eliminating the Blight irradiance gradient created by the presence 
of the canopy (cf. Control vs. B barrier in panel C). Compared with lh seedlings, WT 
seedlings display more intense bending in response to the proximity of the maize canopy, and 
a significant proportion of this bending cannot be accounted for by phototropic responses to B 
light gradients (cf. Control vs. B barrier in panel D). (From Ballare et al. 1992ill. 

the scattered canopy light to effectively avoid their neighbors. Their manipulative 
physiological experiments under natural sunlight have supported this hypothesis. Ballare et al. 
(199211) have shown that cucumber plants use the phytochrome system and a B-absorbing 
photoreceptor to remotely detect their neighbors and to elicit stem bending responses toward 
canopy gaps (Fig. 3). 
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Apart from being able to use light signals in the control of vegetative morphogenesis, plants 
appear to have evolved mechanisms to relay information about the canopy light environment 
into systems that control reproductive allocation. The potential agronomic significance of this 
aspect of plant photo morphogenesis has been discllssed (Ballan~ et al. 1992h; Sanchez et al. 
1993), and will not be covered in this article. 

CONSEQUENCES AT THE POPULATION LEVEL 

Very little is known about the consequences of the photomorphogenic behavior of individual 
plants at the population-level (e.g. Schmitt and Wulff 1993, Ballare 1994). A common belief 
is that most plant responses to proximity signals (teleologically called "shade-avoidance 
responses") are selected through evolution because they confer an advantage to the individual 
plant, but that they would have normally a negative impact on canopy productivity or crop 
yield. On the basis of this idea, the need of eliminating these responses has been voiced by a 
number of authors. Two avenues have been proposed to accomplish this goal: (1) to 
artificially increase the R:FR ratio received by the canopy (in CE), and (2) to engineer 
photo morphogenic ally "blind" plant cultivars. In this section we will briefly discuss the likely 
implications of elongation and tropic photoresponses for whole-canopy productivity. 

Exposure to low R:FR ratios normally results in plants having long internodes and low leaf
to-stem dry weight ratio (LSR) (e.g. Morgan and Smith 1978). One interpretation of the 
change in LSR is that the low R:FR triggers, through phytochrome, a re-distribution of C, 
away from the leaves and toward the stem. According to this view, stem growth responses to 
reduced R:FR may negatively affect canopy yield, by taking up C that would otherwise be 
allocated to leaves, the main light-harvesting organs. Most of the evidence obtained from 
experiments under relatively high irradiances is not consistent with this hypothesis. The most 
significant findings of these experiments are the following (Ballare et al. 199Ih). (1) The 
amount of C allocated to stem growth is, at least for young herbaceous plants, a relatively 
small percentage of the total C budget. (2) A localized reduction of R:FR at the stem level 
can increase internode elongation rate by a factor of two and dry mater accumulation in the 
stems by 40% without having any negative impact on leaf or root growth. In fact, total plant 
biomass can be increased by a localized R:FR treatment, presumably through a feedback 
control over photosynthesis. (3) If whole canopies are grown under extremely high R:FR 
ratios, which nearly eliminate elongation responses to neighbor proximity, stem dry matter 
accumulation is reduced, but without yielding any proportional increase in leaf or root growth 
(Fig. 4). In summary, the C saving benefits of abolishing stem growth responses to neighbor
proximity signals are likely to be very small or nil. 

We have discussed in the preceding sections how sensing of radial R:FR gradients allows 
plants to monitor the spatial distribution of their immediate neighbors. This information, 
acquired through phytochrome, triggers phototropic responses that presumably optimize shoot 
geometry and spreading as a function of the spatial distribution of light gaps in the canopy. 
For instance, long-term experiments in the field have shown that wild-type cucumber plants 
are much more efficient at deploying leaf area into gaps than plants of an isogenic lh mutant 
that lack immunochemically-detectable phytochrome B. Shoot geometry and space occupation 
are mayor determinants of whole-plant C-assimilation (e.g. KOppers, 1994). Therefore, if we 
move up in scale one step, i.e. from single shoots to a shoot population, the inference would 
be that phototropic responses, triggered by R:FR gradients, are likely to be an important 
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component of the mechanisms that allow the growing canopy to efficiently "fill-up" the 
aboveground space. In other words, at each point in time during canopy development, 
phototropic responses of individual shoots would increase light interception per unit of canopy 
leaf area. 
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Fig. 4. Effect of filtering out the FR wave-band from the light received by canopies of 
amaranth (Amaranthus quitensis) on canopy growth and dry matter allocation. FR was filtered 
using cuvettes containing CuS04 solutions (see diagram upper left). This treatment increased 
the R:FR received at the top of the canopy from 1.1 (control; cuvettes filled with water) to 
17.4 (-FR), and effectively reduced stem elongation. The bars indicate biomass present in the 
various organs after two weeks of treatment. The level of significance is indicated for each 
difference; NS = not significant (P>0.05). (Adapted from Ballare et al 1991Q). 

Most studies on canopy photomorphogenesis have focused on the average response of the 
components of a population, not on the variability among individual plants. Yet information 
on the latter is important if the goal is to predict the population-level consequences of plant 
photophysiology. The development of size (dry weight) inequalities among neighbors is one 
of the best characterized population responses to increased plant density (number of plants per 
unit area) (Harper 1977, Weiner 1985). Because reproductive output and size are often 
positively correlated within plant populations (e.g. Thompson et al. 1991), understanding the 
determinants of size variability is of fundamental importance for ecologists (Weiner 1985, 
Weiner et al. 1990) and growers (Harper 1977, Benjamin and Hardwick, 1986). Transgenic 
tobacco plants that express an oat phytochrome gene (phyA) under control of the CaMV35S 
promoter and display altered photophysiology have been recently used to test the role of light 
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sensing in the genesis of size inequalities in plant populations (Ballan~ et al. 1994). Compared 
with the isogenic wild-type, phyA-overexpressing plants showed dramatically reduced 
morphological responsivity to changes in the R:FR ratio of the incident light, and to the 
proximity of neighboring plants in spacing experiments. In transgenic canopies an increase in 
stand density caused the small plants of the population to be rapidly suppressed by their 
neighbors (Fig. 5). In wild-type canopies, plants responded to increased density with large 
morphological changes, and there appeared to be an inverse relationship between the 
magnitude of this morphological response and the ranking of the individual plant in the 
population size hierarchy (not shown). In these wild-type populations, size inequality 
increased only moderately with density within the time frame of the experiments (Fig. 5). 
These results suggest that, in crowded stands, the ability of individual plants to acquire 
information about their light environment via phytochrome plays a central role in driving 
architectural changes that, at the population level, delay the development of size differences 
between neighbors. 
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Fig. 5. Effects of increasing popUlation density on the development of size inequalities among 
neighbors in monocultures of WT and 8-3 transgenic tobacco plants. Bars indicate ±l SE; 
n=5 (final) or n=15 (initial) replicate canopies. Dry weights were measured after 30 days of 
growth; data are plotted against the leaf area index (LAI) estimated for the 15th day. Initial 
inequality was within ± 15 % of the plotted average (dashed line) in all density treatments. 
(From Bal1an~ et al. 1994). 
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In summary, although very little is still known from studies under realistic levels of PAR, the 
evidence discussed in this section suggest that, contrary to the ideas currently on fashion, 
interfering with the normal traffic of light signals between neighboring plants (e.g. by using 
extremely high R:FR ratios), or with the plants' information-acquiring systems (e.g. by 
breeding photomorphogenically "blind" genotypes), is unlikely to result in an increase of 
canopy net primary productivity. The impact of such manipulations on harvestable yield is 
difficult to predict, mainly because of uncertainties regarding photomorphogenic controls of 
developmental timing (e.g. Mondal et al. 1986) and reproductive allocation (e.g. Heindl and 
Brun 1983). However, to the extent that size structuring compromises yield and yield 
uniformity, the available data suggest that elimination of plant photomorphogenic responses in 
canopies will result in reduced agronomic productivity. 

IMPLICATIONS FOR LIGHTING IN CONTROLLED ENVIRONMENTS 

Light conditions differ between controlled and natural environments in many regards, 
including: daily time course of irradiance changes, spatial distribution of the light field, total 
irradiance, and spectral balance. In this section we concentrate on the latter two aspects (total 
irradiance and spectral distribution). We will use some of the concepts developed earlier in 
this article to discuss how the use of unnatural irradiances and spectral distributions may 
affect (1) whole-canopy growth, and (2), the likelihood that results obtained in the CE may be 
properly extrapolated to the field situation. 

Low Light Levels 

Lighting fixtures in most CE, particularly in old designs, provide PAR irradiances that are 
between one twentieth to one half of the peak PAR in a clear summer day. This low PAR of 
course will limit canopy growth by limiting photosynthetic rates (e.g. Geiger, this volume). 
But in addition to the growth limitation, several aspects of plant morphogenesis are be altered 
by the use of low irradiances (e.g. Blackman and Wilson 1951). Of particular importance 
within the context of this article is the interaction between low PAR levels and proximity 
responses elicited by light signals. In the foregoing sections we have discussed evidence that 
changes in fluence rate may signal encroaching vegetation to plants growing in sparse 
canopies. Morphological responses to fluence rate, although readily observable under high 
light conditions (e.g. Ballare et al. 1991ill have not been consistently detected in CE studies 
under low PAR (e.g. Child and Smith 1987). Of course there are many possible explanations 
for the differences between CE and field studies, and a complete treatment of this subject is 
far beyond the scope of this article. But, in principle at least, there are good reasons to 
suspect that the use of low background light levels in CE is in itself a major complicating 
factor in studies of photomorphogenic responses to total irradiance. In the same vein, the use 
of low PAR levels in CE might contribute to artificially inflate the opportunity cost of stem 
growth responses to low R:FR ratios. Thus, plants growing in the field might be able to 
compensate the increased C demand of rapidly elongating internodes with a slight increase in 
leaf photosynthesis, whereas plants that are already limited by light may be more likely to 
rely on re-distribution of their short supply of carbohydrates. Finally, under extremely low 
PAR levels, the extent of the response to R:FR may be affected, presumably as a consequence 
of assimilate limitations (Smith and Hayward 1985). Low light levels are also likely to 

97 



accentuate the development of size hierarchies within the population (i.e. increase the 
coefficient of variation of dry weight per plant) (Schmitt et al. 1986), with potential negative 
consequences for yield and yield uniformity. 

High R:FR Ratios 

Fluorescent tubes and high pressure sodium vapor lamps are popular PAR sources in CE, and 
both provide R:FR ratios several times higher than sunlight. Due to the spectral properties of 
Pr and Pfr, changes in R:FR above ca. 1.5 do not cause a proportional change in the 
phytochrome photo equilibrium (Smith and Holmes 1977). Therefore, the R:FR-based neighbor 
detection mechanism is likely to be distorted or disabled when canopies are grown under 
extremely high R:FR ratios. Some experimental evidence for this idea has been provided by 
studies with amaranth, in which CuS04 filters were used to increase the R:FR ratio of the 
light received by the canopies and reduce stem elongation. These studies have shown that 
very high R:FR ratios result in decreased (rather than increased) canopy net productivity. It is 
not clear whether this decrease is caused by (1) the elimination of an active sink of 
assimilates (i.e. the growing internodes), a change in the pattern of light penetration through 
the canopy (see below), or a combination of the two. In any case, these results appear to 
directly contradict the notion that canopy growth at high densities is limited by the diversion 
of photosynthate to "shade-avoidance" responses. Of course, the use of artificially high R:FR 
ratios may be a convenient way to obtain short-statured plants in CE, which may be desirable 
for many crops grown for horticultural or ornamental purposes (McMahon and Kelly 1990, 
Rajapakse and Kelly 1992). 

Another predictable consequence of the use of extremely high R:FR ratios in CE is the 
elimination of phototropic responses triggered through phytochrome. Since these responses 
may playa role in the dynamics of gap-filling by the canopy, it is suggested that the increase 
in light interception over time (and therefore canopy growth) will be slowed under very high 
R:FR. Of course, the extent of this retardation would depend upon (1) the quantitative 
importance of phototropic responses in gap-filling by the shoot population, and (2), the extent 
to which phytochrome and B-absorbing photoreceptors play redundant roles in controlling 
phototropic responses in canopies. 

Finally, very high R:FR, which disable the phytochrome-mediated mechanism of neighbor 
etection, will almost certainly result in increased size structuring in dense plant populations. 
From a plant grower stand-point the establishment of a strong size hierarchy in the population 
might have two negative consequences: reduced total yield at high densities and reduced yield 
uniformity. 
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PHYTOCHROME, PLANT GROWTH AND FLOWERING 

R. W. King and D.J. Bagnall 

CSIRO Division of Plant Industry, GPO Box 1600 Canberra, ACT, 2601 Australia 

INTRODUCTION 

Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight 
have provided compelling evidence of the importance of light quality for plant growth. 
Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic 
input can shift the phytochrome photo equilibrium in a plant and generate large differences in 
plant growth. With FR enrichment the plants elongate, and may produce more leaf area and 
dry matter (see Smith, 1994 these proceedings). Similar morphogenic responses are also 
obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day (Ballare 
1994; these proceedings). Conversely, for plants grown in natural conditions the response of 
plant form to selective spectral filtering has again shown that red and far-red wavebands are 
important as found by Kasperbauer and coworkers (Kasperbauer, 1992). Also, where 
photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal 
of far-red alone alters plant growth (Mortensen and Stromme 1987; McMahon et al., 1991). 
As shown in Table 1 for chrysanthemum, with FR depletion pl~nts grown in sunlight are 
small, more branched and darker green. Here we examine the implications for plant growth 
and flowering when the far-red composition of incident radiation in plant growth chambers is 
manipulated. 

TABLE 1. Influence of filtered sunlight on growth and flowering of chrysanthemum cv Yellow 
Mandalay in long days of summer. Adapted from McMahon et al. (1991). 

Filter R:FR Pfr:Ptot Plant Leaf Chlorophyll 
Height (g cm-2) 

(cm) 

Red 1.16 .71 30.3** 36.7 

Blue 0.99 .66 29.3 39.5 

Far-red 3.3 .79 16.9** 55.4** 

Control 1.16 .71 28.6 39.8 
Significant differences; * p = 0.05 or ** p = 0.01 vs control 
R:FR ratio 655-665 run vs 725-735 om 
Pfr:Ptot calculated over 350 to 850 om 
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Leaf 
Number 

22 

21.6 

17.1** 

21.5 

Visible 
Flowering (days) 

- 52 

- 52 

46-49 

- 52 



FAR-RED ENRICHMENT AND PLANT GROWTH IN ARTIFICIALLY LIT CHAMBERS 

As with spectral filtering of sunlight, differences in the R:FR ratio of light in growth chambers 
can lead to large effects on growth (Figs 1, 2). Here PPFD was held constant across the two 
chambers (560 mols m-2s-1) and there were no major thermal differences, leaf temperatures 
across the chambers being within 1 to 2 DC. Thus, the greater stem elongation with mixed 
metal halide/quartz halogen versus fluorescent lamps (Fig. 1) can be most simply explained as 
a phytochrome mediated response to FR enrichment. This FR-induced change was not driven 
by photosynthesis as stem elongation increased rapidly especially in sunflower « 1 week, 
Fig. 1) and preceded by 1-2 weeks any increase in dry matter accumulation and leaf area 
production. To reiterate, there was firstly a change in plant form (Fig. 1), then later a change 
in dry weight indicating an initial photomorphogenically-driven increase in leaf area with 
subsequent photosynthetic increase, a conclusion suggested by Smith and coworkers from their 
studies over the last decade (see Smith 1994). On the other hand, photosynthetic capacity 
and/or leaf assimilate export could respond directly to FR enrichment. Chow, Anderson and 
coworkers have reported many FR effects on photosynthetic light harvesting pigment 
components particularly of young pea seedlings and these responses can result in slightly 
increased CO2 exchange rates per unit leaf area (Chow et al., 1990). 

Surprisingly large effects on dry matter allocation to roots were observed as a consequence of 
FR enrichment (see Figure 2). Root growth has not always been measured in these types of 
experiment (e.g. Tibbitts et al., 1983) but there could also be a trivial explanation for the data 
summarized in Figure 2. Greater dry matter allocation to the roots was evident only at the last 
( week 4) harvest. For tomato, for example, the root:shoot ratio doubled to 0.53 over the last 
week of growth in FR-enriched conditions whereas in the R-rich cabinet it remained at ca 0.3. 
However, this dry matter reallocation occurred when total dry matter was also increasing 
exponentially. Thus, the rapid increase in leaf assimilate supply may have temporarily 
exceeded stem demand leading to a shunting of assimilate to the roots and a transient shift in 
the root:shoot dry weight balance in FR-enriched conditions. Further studies are needed of 
responses of roots to FR-enriched conditions especially since our findings with tomato are the 
opposite of those noted earlier by Kasperbauer (1992) where only end-of-day light quality was 
altered. 

Although sunflower and tomato grew optimally in FR-enriched conditions (Fig. 2) wheat was 
rather insensitive (Figs. 1,2) as also found for wheat by Tibbitts et al. (1983). The slower 
growth of the eucalypt (Fig. 1) may have masked positive responses. However, there was a 
significant reversal of response compared to other species in that FR-enrichment led to the 
formation of fewer leaves (61.2_3.5 vs 91.7_10.0) and branches (7.8_0.8 vs 13.2_1.5). This 
data for eucalypt requires confirmation but large differences in sensitivity to FR between 
species have been reported previously (Tibbitts et al., 1983 and see references therein). 
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Fig. 2. Relative proportion of dryweight 
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of uprights) and leaf (circles x 2) after 4 
weeks growth in a FR- or R-rich cabinet. 
Conditions as in Fig. 1. 
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FLOWERING AND FAR-RED ENRICHMENT 

Potential for change in time to flower with FR enrichment is one morphogenic response that 
has received little attention in the designing of lamp types for plant growth chambers. For 
short-day plants, red rather than far-red rich conditions favour flowering (see Salisbury, 1965) 
but in most published reports there have generally been confounding effects of day length 
change and photosynthetic input. With equalization of photosynthetic inputs as in the study of 
McMahon et al. (1991) with the short-day plant chrysanthemuql, there was actually a slight 
enhancement of flowering time for plants grown in long days with removal of far-red (see 
Table 1). However, the response .to the presence or absence of far-red may also vary with the 
time of the day. For the ~hort-day plant Pharbitis nil a FR interruption of as little as 90 min 
during continuous light can promote or inhibit flowering depending on its timing (Heide et al. , 
1986). This FR response cycles with a period of about 12-h of a semidian rhythm (see Table 
1). 

By contrast with short-day plants, promotion of flowering by FR enrichment can be expected 
in long-day plants (see Vince-Prue, 1975; Deitzer, 1984). However, there are also very few 
comparisons of effects of luminaries on flowering of long-day plants when photosynthetic 
input has been fixed. In the studies of Tibbitts et al. (1983) mustard in 16-h long days reached 
anthesis about 2 to 3 d earlier (in a total of 25 to 29 d) when it was exposed to FR-rich lamps. 
Wheat was unaffected reaching anthesis at 57 d. However, an almost halving of days to 
flower (40 to 24 d) and of leaf number at flowering was found by Bagnall (1993) for the lea 
mutant of Arabidopsis (Landsberg strain) exposed to long days and ratios of R:FR ranging 
from 5.8 to 1.0. 

The importance of FR-mediated effects of phytochrome on flowering in long-day plants is 
shown clearly by recent studies of Bagnall and coworkers (1994). They found that transgenic 
Arabidopsis plants constitutively overexpressing the far-red sensing phytochrome A gene 
flowered very early relative to the isogenic wild type (28 vs 64 d). Conversely, a mutant 
lacking phytochrome A is late to flower in FR-enriched conditions (Johnson et aI., 1994) 
involving low PPFD (10 mol m-2s-1) FR-rich tungsten day length extensions. 

A PHOTOSYNTHETIC ROLE IN FLOWERING 

Although FR plays a central role in determining flowering time, photosynthetic input also 
influences expression of the long day response. Latium temu[entum, for example, flowers in 
response to a single long day and shows enhanced flowering the greater the photosynthetic 
irradiance. However, Lotium remains vegetative in short days independent of the irradiance of 
sunlight up to 1200 mol m-2s-1 (King and Evans, 1991). Photosynthesis alone is insufficient 
for flowering whereas a single non-photosynthetic long day given as a 16-h incandescent low
irradiance daylength extension is sufficient (Fig. 3) and less effective is an extension using a 
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fluorescent, FR-deficient lamp. For either lamp, in association with a long day, increasing 
their photosynthetic contribution gives parallel and linear increases in flowering response (Fig. 
3). There is no evidence here of interaction between light quality - the phytochrome-mediated, 
response - and the photosynthetic response to this long day. Tlius, photosynthesis in Lolium 
must be considered as beneficial but not sufficient for flowering. On the other hand, a more 
direct photosynthetic effect is evident in another long day plant, Sinapis alba. Its requirement 
for a single FR-rich long daylength extension can be bypassed by increasing photosynthesis for 
more than three short days although this effect involves four times the photosynthetic 
irradiance applied during a single photoinductive long day (Bodson et aI., 1977). 

Since phytochrome and the photosynthetic pigments can act in concert to promote flowering of 
long-day plants, then, with increasing irradiance the photosynthetic contribution to flowering 
will range from nothing to apparently over-riding control by photosynthesis. As a 
consequence, action spectra could range from dominance by red wavelengths to a balance in 
the contribution by red and far-red and to the classic dominance by far-red wavelengths. The 
literature contains illustrations of all these combinations of wavelength and response of 
flowering to red and far-red. (Deitzer, 1984; Carr-Smith et al. 1989) and, clearly, some 
detailed reexamination of wavelength and irradiance interactions is required. 
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Fig. 3. Dependence on irradiance from fluorescent lamps during a single 16-h daylength 
extension of (a) flowering response in terms of shoot apex length after 3 weeks and (b) apex 
sucrose content at the end of the 16-h extension. Short day (_) and a low PPFD incandescent 
16-h extension (0) are also included. Leaf CO2 exchange (c) was determined during the main 
photoperiod. From King and Evans (1991). 

107 

, > ~ 



OVERVIEW 

As a broad generalization, far-red rich lamps are beneficial and sometimes essential, for plant 
growth and flowering in artificially lit chambers. Thus fluorescent and sodium lamps, being 
FR deficient may cause stunting and poor flowering. Brief end-of-day FR exposure may 
alleviate some of the stunting of growth but will probably have complex effects on flowering. 
A more beneficial approach appears to be continued FR enrichment over the whole 
photoperiod. A further complexity is that the need for FR input may vary cyclically over the 
day. 
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LIGHTING CONSIDERATIONS IN CONTROLLED ENVIRONMENTS FOR 
NONPHOTOSYNTHETIC PLANT RESPONSES TO BLUE AND ULTRAVIOLET 

RADIATION 

M.M. Caldwell and S.D. Flint 

Department of Range Science and the Ecology Center, Utah State University, Logan, Utah 
84322-5230, USA 

INTRODUCTION 

This essay will consider both physical and photobiological aspects of controlled environment 
lighting in the spectral region beginning in the blue and taken to the normal limit of the solar 
spectrum in the ultraviolet. The primary emphasis is directed to questions of plant response to 
sunlight. Measurement and computations used in radiation dosimetry in this part of the spectrum 
are also briefly treated. 

Because of interest in the ozone depletion problem, there has been some activity in plant UV-B 
research and there are several recent reviews available (Caldwell et al. 1989, Tevini and 
Teramura 1989, Teramura 1990, Tevini 1993, Caldwell and Flint 1994). Some aspects of 
growth chamber lighting as it relates to UV -B research were covered earlier (Caldwell and Flint 
1990). Apart from work related to the bluelUV -A receptor (Senger 1984), less attention has 
been given to UV-A responses (Klein 1978, Caldwell 1984). 

SOLAR UV AND BLUE RADIATION 

The justification and interest in much of the plant research in controlled environments revolve 
around how plants may respond to solar radiation in nature. This is the emphasis of this essay. 
Some very different requirements may be in order for research probing the nature of 
chromophores, etc. However, these requirements can be very specific to particular research 
efforts and will not be considered. 

In sunlight, blue and UV -A (320-400 nm)1 radiation are tightly coupled and covary with changes 
in solar angle, atmospheric turbidity and cloudiness (Madronich 1993). The UV -B (280-320nm) 
is somewhat uncoupled from UV -A and blue light in that it is independently influenced by 
atmospheric ozone absorption. Even with the same total atmospheric ozone column thickness, as 
solar angle (and therefore atmospheric pathlength) varies, UV-B is affected to a greater degree 
than the longer wavelength radiation. Much interest of late has centered on the question of 
stratospheric ozone reduction and its influence on ground-level UV -B. However, even in the 
absence of ozone reduction, the normal latitudinal gradient in ozone column thickness and 
prevailing solar angles result in a much greater latitudinal gradient ofUV-B (especially at the 

I As originally defined (Coblentz, 1932), the UV spectrum is: UV-A 315 to 400 nrn, UV-B 280 to 315 nrn, and 
UV-C <280 nrn. However, the division between UV-A and UV-B is often taken as 320 nrn. 
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shorter wavelengths) than in UV-A and visible radiation (e.g., Caldwell et al. 1980, Madronich 
1993). 

Within the UV -B waveband, the spectral distribution is also greatly influenced by changes in 
atmospheric ozone column thickness and solar angle (Fig. 1). 
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Fig. 1. (upper) Solar spectral irradiance (dilrect beam + diffuse) at noon at a temperate 
latitude (400

) location in summer with normal (continuous line) and a 20% reduction of 
the ozone column ( dashed line). In the inset is the factor for relative increase of spectral 
irradiance at each wavelength due to the ozone column reduction. (lower) Solar spectral 
irradiance at a temperate latitude (40°) location in summer at different solar angles (20°, 
43° and 60° from the zenith). In the inset is the factor for relative increase of spectral 
irradiance when the solar zenith angle changes from 43° to 20°. 

These large alterations of spectral distribution within the UV -B are the result of the absorption 
cross section (absorption coefficient) of ozone. The abrupt decrease of spectral irradiance as a 
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function of decreasing wavelength has not, to our knowledge, been satisfactorily achieved 
without using ozone itself as a filter. [Tevini et al. (1990) have achieved this by using ozone to 
filter natural sunlight in the field. However, the size of the useable plant experimentation space 
is very limited.] To mimic the change in spectral flux density during the day in controlled 
environments (as occurs with solar angle changes) would be technically challenging and very 
costly -- a cost of dubious value for most research goals. Given the unpractical nature of trying 
to trying simulate solar spectral irradiance, some compromises are normally taken as will be 
discussed later. 

SOME PHOTOBIOLOGICAL CONSIDERATIONS 

Ultraviolet and blue radiation can elicit many photobiological reactions in plants, some of which 
have been rather well studied (e.g., the bluelUV -A receptor phenomena -- Senger 1984). Other 
responses are less well understood in terms of chromophores and other photobiological 
characteristics. Nevertheless, action spectra and/or suspected chromophore absorption spectra 
are often used conceptually in dosimetry and prescribing requirements for radiation. This is 
analogous with what has been done in illumination technology and in considering visible 
radiation for photosynthesis. For example, the standard photopic relative luminous efficiency or 
"standard eye" curve is used a weighting factor in all photometric units (such as luminous flux, 
candela or lux). Basically, this involves a dimensionless factor at each wavelength that weights 
the radiation according to the ability of the human eye to see this wavelength of radiation. When 
the weighted spectral irradiance is integrated with respect to wavelength, a single value of 
luminous flux is obtained. This has served well in lighting engineering since light from various 
sources can be compared with respect to human ability to utilize the light such as in reading. In 
a similar vein, a standard to represent photosynthetically active radiation has been widely 
adopted, namely the total photon flux density in the waveband 400-700 nm. The introduction of 
an integrating dosimeter for total photon flux in this waveband by Biggs et al. (1971) was a very 
useful contribution for plant scientists. With this "quantum sensor", one can easily measure what 
is commonly termed "photosynthetically active radiation -- PAR" or "photosynthetic photon flux 
-- PPF". An error analysis by McCree (1981) shows that the errors involved in using the 
quantum sensor with sunlight and various lamps are small. Also, he showed that the discrepancy 
between the true photosynthetic action spectrum and the quantum sensor spectral sensitivity 
approximating total photon flux, though appreciable in the blue part of the spectrum, is usually 
not serious for the types of dosimetry normally conducted. Thus, with relative impunity, the 
plant scientist can make hislher measurements and be primarily concerned with other aspects of 
the research. 

Analogous approaches have been used in the UV -B and dosimeters have been devised for 
obtaining a weighted integrated measure of "effective" UV -B -- th.e weighting function usually is 
that describing sunburning of human skin (e.g., Berger 1976, Diffey 1986). We are not aware of 
this approach with dosimeters incorporating biological weighting factors being taken in the 
UV -A. There are several difficulties with this approach in the spectral region spanning the blue 
to UV-B -- some which are related to the manner in which solar radiation behaves and some to 
the many potential chromophores that may be important in this part of the spectrum. This 
diversity is indicated in Fig. 2. 
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Fig. 2. Action spectra for various plant or microbial photobiological reactions in 
response to UV-B and UV-A radiation: (1) flavonoid pigment induction in cell cultures 
of parsley (Wellmann 1983); (2) photo system II activity inhibition of isolated spinach 
thylakoids (Bornman et al. 1984); (3) DNA-dimer formation in intact alfalfa seedlings 
(Quaite et al. 1992); (4) inhibition of net photosynthesis in intact dock (Rumex patientia) 
leaves (Caldwell et al. 1986); (5) growth delay allowing more effective repair ofUV 
damage (called photoprotection) in E. coli (Kubitschek and Peak 1980) (6) carotenoid 
protection ofUV damage in Sarcina lutea (Webb 1977); (7) photoreactivation ofUV 
damage to DNA (dimer formation) in E. coli (Jagger et al. 1969) . 

This collection is certainly not comprehensive, but should convey the diverse characteristics of 
these spectra. Of course, a plant response may involve coaction of two or more chromophores. 

In addition to the diversity of chromophores, the nature of solar radiation also complicates 
representation of plant-effective radiation, especially in the UV -B. In the UV -A and visible 
spectrum, spectral irradiance does not undergo large changes as a function of wavelength. 
However, in the UV -B, attenuation by ozone comes into play and spectral irradiance drops by 
orders of magnitude with decreasing wavelength -- more than 4 orders of magnitude within 25 
nm (Fig. 1). When weighting functions (derived from action spectra or suspected chromophore 
absorption spectra) are applied to the spectral irradiance. small differences in the weighting 
functions can result in very large differences in the "effective" radiation (Caldwell et al. 1986, 
Madronich 1993). Thus, a situation quite different from evaluating PPF in the visible spectrum 
exists. Since simulating the solar spectrum in controlled environments is, for the most part, never 
achieved, one is forced to compare the "effective" radiation in sunlight with the "effective" 
radiation derived from the lamp systems no matter how the effective radiation is defined (i.e., 
which weighting function is employed). This may not always be apparent to the reader of such 
research reports, but is a necessary component of evaluating the radiation environment of the 
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plants. Depending on the weighting functions used, large discrepancies can arise. This is 
discussed in detail elsewhere (Caldwell et al. 1986). In principle, these discrepancies would be 
much less of problem in the UV -A and blue part of the spectrum. However, there has been little 
attention to analogous dosimetry at these longer wavelengths. 

DOSIMETRY 

As mentioned above, a few UV-B dosimeters have been devised .. Even if these dosimeters 
function flawlessly, the quantity obtained is confined to the built-in weighting function and this 
cannot be easily extrapolated to UV -B weighted with other biological weighting functions. 
Alternatively, one can measure the spectral irradiance, wavelength by wavelength. This is 
certainly the most desirable since the spectral irradiance can be convoluted with any desired 
weighting function. However, an instrument that can measure satisfactorily in the solar UV-B 
spectrum involves much more demanding (and expensive) characteristics than is required in the 
visible spectrum. The primary reason for this is the orders-of-magnitude change in flux in this 
part of the spectrum (Kostkowski et al. 1982, Diffey 1986). This essay is not an appropriate 
place for a discussion of spectroradiometer measurements and characteristics, but the reader 
should at least be warned of the difficulties. 

There are also geometrical considerations. Unlike solar visible radiation which is dominated by 
the direct beam component, the proportion of global solar UV radiation in the diffuse component 
is much greater and this proportion increases with decreasing wavelength. At the shorter (and 
generally most biologically effective) UV-B wavelengths, most ofthe radiation is in the diffuse 
component. Certainly the geometrical representation of radiation in controlled environments 
seldom approaches that of solar radiation in nature and it would probably not be a wise 
investment to attempt this for most problems. Nevertheless, the assumptions made and the 
geometrical characteristics of the radiation sensors (cosine law adherence, etc.) further 
complicate the comparison of sunlight with controlled environment lighting. 

INTERACTIONS OF DIFFERENT SPECTRAL COMPONENTS 

The use of biological weighting functions (whether built into dosimeters or used in computations 
of effective radiation from spectral irradiance determinations) carries the assumption that the 
plant response represented by the weighting function also applies with polychromatic radiation. 
The weighting functions are derived from action spectra (usually obtained with monochromatic 
radiation) or suspected chromophore absorption spectra (necessarily derived from 
monochromatic radiation). Whether the aggregated monochromatic radiation responses, i.e., the 
integral of weighted spectral irradiance, adequately represents responses in polychromatic 
radiation has seldom been tested. Nevertheless, this is the common assumption. 

Some of the action spectra in the UV-A and blue light represented in Figure 2 are specifically for 
secondary processes that modify primary responses to UV-B -- usually mitigating the damage. 
Even if all the primary UV-B and secondary UV-A and blue light driven processes were 
perfectly understood, the question is whether their aggregated responses interact in a simply 
additive fashion. Or, would synergistic responses occur? A mechanistic understanding of these 
interactions eludes us thus far. Therefore, one must rely on empirical clues. For example, a few 
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experiments have been performed to test how visible and UV-A radiation affect UV-B 
sensitivity. 

Experiments specifically designed to investigate the influence ofPPF level on UV-B sensitivity 
showed that UV -B effects were less pronounced if plants were under higher PPF (Teramura 
1980, Teramura et al. 1980, Warner and Caldwell 1983, Mirecki and Teramura 1984, Latimer 
and Mitchell 1987, Cen and Bornman 1990, Kramer et al. 1991, Kumagai and Sato 1992). More 
recently a field study using a combination ofUV-emitting lamps and filters indicated that both 
high PPF and UV-A flux had mitigating effects on UV-B reduction of plant growth (Caldwell et 
al. 1994). However, the mitigating effects ofUV-A and PPF did not act in a simple additive 
manner nor in a fashion that could be predicted from combinations of the action spectra 
represented in Figure 2. Although they did not specifically test the effect of different levels of 
UV-A and PPF on UV-B sensitivity, Middleton and Teramura (1993a) showed that UV-A could 
exert both positive and negative effects on plant growth and some physiological characteristics 
in a greenhouse study. Fembach and Mohr (1990) demonstrated coaction ofUV-Alblue light 
receptor and phytochrome and they also showed UV -A to be important in modifying UV-B 
sensitivity (Fembach and Mohr 1992). 

SPECTRAL BALANCE IN GROWTH CHAMBERS AND GREENHOUSES 

The ratio UV-B:UV-A:PPF in sunlight is approximately 1:23:270 when taken on a total photon 
flux basis in each waveband (without weighting) (Caldwell et al. 1994). This is seldom 
replicated in controlled environments (Fig. 3). 

To provide some perspective on how the average daily UV-B and PPF employed in greenhouse 
and growth chamber experiments relate to such values measured in the field, a brief survey is 
given in Figure 4. 

Forty papers describing growth chamber UV -B experiments published between 1990 and 
October, 1993 were examined for ratios ofUV-B:PPF employed in the experiments. Of these 
only 14 reported enough information to determine the daily UV -B and PPF used. Since some of 
these papers included multiple treatments, there is a total of20 data points in Figure 4. 
Similarly, for greenhouse experiments during the same period, only 6 (out of27) reported 
integrated daily PPF and the daily UV-B used. Again because of multiple treatments, ten data 
points are available. (We feel simply reporting the maximum midday values ofPPF in 
greenhouse experiments does not provide a useful indication of the daily average values.) Even 
though maximum PPF in growth chambers may not be particularly great, in some experiments 
with sufficiently long daylengths, the integrated total-day UV -B:PPF ratio was close to that of 
the natural environment. However, in most of these experiments the UV-B:PPF ratios were far 
from those experienced by plants in the field. 
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Fig. 3. Spectral irradiance in two types of 
growth chambers and in a greenhouse where 
different UV-B experiments were 
conducted. A. A chamber equipped with a 
combination of metal halide and high 
pressure sodium lamps combined with the 
normal filtered UV -B fluorescent lamps 
used in UV-B plant experiments: (solar) 
solar radiation at noon at midlatitude in the 
summer; (+UV) chamber lighting combined 
with UV -B fluorescent bulbs filtered with 
cellulose acetate plastic film; ( co) the same, 
but with the UV-B bulbs filtered with 
polyester fibn (often used as a control); 
(without UV lamps) the chamber lighting 
without UV -B bulbs. B. A chamber with 
6000-W xenon short arc lighting: (solar) 
solar radiation as in A.; (+UV) the xenon 
lamp filtered with cellulose acetate film; 
(co) the xenon lamp filtered with polyester 
film. C. Spectral irradiance in a glasshouse 
with the filtered UV -B fluorescent bulbs as 
in A: (solar) solar radiation as in A, outside 
the glasshouse; (+UV) UV-B fluorescent 
lamps filtered by cellulose acetate plastic 
film with background high pressure sodium 
lamps and sunlight coming into the 
glasshouse; (co) UV -B bulbs filtered by 
polyester film with background high 
pressure sodium lamps and sunlight coming 
into the glasshouse; (sunlight through 
glass) background winter sunlight coming 
into the glas~house without other lamps. 
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Fig. 4. Average daily integrated biologically effective UV -B using the generalized plant 
action spectrum weighting function (Caldwell 1971) nonnalized to 300 run (UV-BBE) and 
total photon flux in the 400-700 run waveband (PPF) emp'loyed in growth chamber and 
greenhouse experiments (e). For comparison, measured solar UV-BBE and PPF on a 
clear day (3 August 1993) at 1450 m elev. and 41 oN latitude (0) and the corresponding 
value computed (using the measured values as a basis) for a 20% reduction of the ozone 
column (A). From Caldwell and Flint (in press). 

Usually the UV -A is not reported in greenhouse and growth chamber experiments. However, 
since a portion of the UV-A is removed by greenhouse glass and the lamps in many growth 
chambers do not emit a large flux ofUV-A (Fig. 3), fluxes ofUV-A comparable to those in 
sunlight are not generally anticipated (Middleton and Teramura 1993b). The levels ofUV-B and 
PPF in Figure 4 and the generally low UV -A in greenhouse and growth chamber experiments 
leads us to suggest that many such experiments may have substantially exaggerated plant 
sensitivity to UV -B. However, if the research interest does not relate to UV -B effects, but rather 
specific responses to UV -A or blue light, different criteria should be considered and the 
UV-B:UV-A:PPF ratio may be ofless interest. 

CONCLUSIONS AND COMPROMISES 

It would be quite desirable to replicate the solar radiation, both in flux density and spectral 
distribution, in controlled experiments. Assumptions regarding appropriate weighting functions, 

120 

30 



etc. would be' obviated and a greater realism in experiments could be realized. However, 
duplicating the sun with artificial lighting, especially in the UV-~, is not presently attainable and 
may only be realized in the future with inordinate expense. A less ideal, but more practical, 
solution will usually be a compromise. For example, rather than trying to achieve the perfect 
spectral shape of sunlight, a more achievable goal would be to maintain the ratio of 
UV-B:UV-A:PPF similar to that in solar radiation. Increased duration of irradiation in growth 
chambers may have to compensate for not achieving peak midday solar flux densities. Of 
course, the degree to which different compromises are acceptable depends on the particular 
research interests. In any case, investment of resources and time in good dosimetry is of prime 
importance. Most lamps and many types of filters undergo ageing and lamp output is often 
temperature dependent. Thus, frequent measurements need to be conducted. In greenhouse 
environments, the solar radiation background continually changes while supplemental lamps in 
use may change relatively less. Thus, rather than simply representing peak values or midday 
averages, irradiation in different spectral bands should be reported in mean daily integrals. Use 
of weighting functions can seldom be avoided, at least for work in the UV -B. However, it is 
important to appreciate the assumptions and limitations involved in their use. 
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INTRODUCTION 

All life on earth depends on light. A variety of photoreceptors capture the light for a wide range 
of reactions. Photosynthetic organisms absorb the light necessary for energy transfonnation and 
charge separation facilitating photosynthesis. In addition to the bulk pigments there are a great 
diversity of photoreceptors present in minute concentrations that control development, metabo
lism and orientation of plants und microorganisms. (Shropshire and Mohr 1983, Senger 1987a, 
Kendrick and Kronenberg 1994). Based on its spectral absorbance, the well-studied phyto
chrome system acts in the RL region as well as in the UV -AlBL region where the above men
tioned reactions are mediated by a variety of photoreceptors whose natures are largely unknown. 

Phyllogenetically the UV -AlBL photoreceptors seem to be more ancient pigments that eventually 
were replaced by the phytochrome system. However, there are many reports that suggest a coac
tion between the UV -AlBL receptors and the phytochrome system. In several cases the 
UV -AlBL activation is the prerequisite for the phytochrome reaction (for a review see Mohr 
1994). Historically it was the Gennan botanist Julius Sachs who first discovered in 1864 that 
phototropism in plants was due to BL reactions. It took over 70 years until BUnning (1937) and 
Galston and Baker (1949) rediscovered the BL response. Since then, an ever-increasing attention 
has been paid to this effect. 

Two international conferences in 1979 and 1983 have been entirely dedicated to the BL 
phenomenon (Senger 1980 and 1984). In this contribution, the general aspect ofUV -AlBL re
sponses and especially the responsiveness of algae will be covered. There are numerous review 
articles covering the various aspects ofUV-AlBL action and the photoreceptors involved (Senger 
and Briggs 1981, Kowallik 1982, Richter 1984, Senger 1987a, Senger and Lipson 1987, Galland 
and Senger 1988a and 1988b, Galland and Senger 1991, Galland 1992, Gualtieri 1993, Kaufman 
1993, Senger and Schmidt 1994). 

GENERAL ASPECTS OF UV -AIBLUE-LIGHT EFFECTS 

The best, and easiest, approach to study UV-AlBL effects is action spectroscopy. Action spectra 
calculated from fluence-rate response curves for an array of wavelengths provide both absorption 

Abbreviations: ALA = 5-aminolevulinic acid; BL = blue light; ChI = chlorophyll; LHC = light
harvesting complex; LIAC = light-induced absorbance change; RL = red light; 
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characteristics of photoreceptors involved and thresholds of the given responses (Schafer and 
Fukshansky 1984, Galland 1987). Out of numerous effects, we present a selection of action 

spectra that document that UV -AlBL responses can be observed in higher plants, ferns, mosses, 
algae, fungi and cyanobacteria (Fig. 1). The variety in the shape of the action spectra indicates 
that UV -A and BL must excite a number of different photoreceptors. Nevertheless, it is obvious 
that peaks around 370, 450 and 480 nm are typical. Documentation in the UV region, especially 
below 350 nm, is still insufficient, because in many laboratories light sources and filters to pro
duce the desired. wavelength are not available. 

Photomorphogenic responses are observed throughout the entire spectral region; ranging form 
UV-B to far-red light (Fig. 2). Therefore, the coaction between photoreceptors has to be ex
pected in plants growing under a natural light regime. Indeed, coactions between UV -B and 
UV-A on the one hand (Fernbach and Mohr 1992, Caldwell et al. 1994) and UV-AlBL and phy
tochrome on the other hand (Mohr 1980 and 1994) have been reported. The obvious variety in 
UV -AlBL effects is accompanied by an even wider range of intensities evoking these effects 
(Fig. 3). This range covers at least 12 orders of magnitude and thus, in the natural environment, 
weak moon light, as well as strong sun-light, can trigger UV -AlBL responses. 

Although action spectroscopy is a straight forward approach to identify photoreceptors regulating 
photobiological responses, several points have to be considered if conclusions are to be drawn 
with respect to the behavior of a plant in its natural environment. Under daylight conditions, 
both the fluence rates and the spectral composition of solar light change due to a number of fac
tors such as solar angle (time of day, season), atmospheric turbidity, scattering, cloudiness, the 
ozone concentration, the plant canopy and, in the case of aquatic plants, the absorption character
istics of their aquatic environment (Caldwell 1981, Jeffrey 1981, Smith 1981). Furthermore, dis
tinct wavelengths of the solar spectrum are absorbed by different photoreceptors simultaneously. 
Thus, the final response of a plant to the light environment is the sum of reactions influenced by 
the factors listed above and can hardly be mimicked in the laboratory. 

The Nature ofUV -AIBlue-light Receptors 

Non-photosynthetic responses of plants to light are regulated via a variety of photoreceptors en
compassing UVIBL receptors (Dornemann and Senger 1984, Galland and Senger 1991, Senger 
and Schmidt 1994), phytochrome (Pratt et al. 1990, Quail 1991, Furuya 1993), rhodopsin (Foster 
et al. 1984, Hegemann et al. 1991, Gualtieri 1993) and phycochromes (Bogorad 1975, Bjorn and 
Bjorn 1976). Phytochrome has been well characterized on the protein and gene level. The pre
sent knowledge about UV-AlBL receptors, by contrast, still derives from physiological investiga
tions on UV-AlBL responses, analyses of photoreceptor mutants, chemical analyses of pigments, 
characterization of the optical properties of putative chromophores, in particular light-induced 
absorbance changes (LIACs), and the elucidation of the signal transduction chain (Galland and 
Senger 1988a and 1988b, Galland 1992, Liscum and Hangarter 1991, Kaldenhoff et al. 1993, 
Kaufman 1993, Palmer et al. 1993a and 1993b). 
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Fig. 1. Action spectra displaying the wide
spread distribution ofUV -AIBL-regulated 
physiological processes among plants and 
fungi. (1) Phototropism of Avena sativa 
coleoptile, 10° and (2) 0° (Shropshire Jr. and 
Withrow 1958); (3) light-induced absorbance 
change (LIAC) in Brassica oleracea var. 
botrytis (Widell et al. 1983); (4) 
photo inactivation of indole acetic acid in Pisum 
sativum (Galston and Baker 1949); (5) 
germination of spores of the fern Pteris vittata 
(Sugai et al. 1984); (6) chloroplast rearrange
ment in the moss Funaria hygrometrica 
(Zurzycki 1967); (7) hair whorl formation of 
Acetabularia mediterranea (Schmid 1984); (8) 
cortical fibre reticulation in Vaucheria sessilis 
(Blatt and Briggs 1980); (9) formation of 5-
aminolevulinic acid in Chlorella 
protothecoides (Oh-hama and Senger 1978); 
(10) carbohydrate decrease in Chlorella vul
garis (Kowallik and SchanzIe 1980); (11) 
DNA-photoreactivation in Anacystis nidulans 
(Saito and Werbin 1970); (12) perithecial for
mation in the fungus Gelasinospora 
reticulispora (Inoue and Watanabe 1984); (13) 
photoreactivation of nitrate reductase in Neu
rospora crassa (Roldan and Butler 1980); (14) 
carotenogenesis in Neurospora crassa (DeFabo 
et al. 1976); (15) phototropism in Phycomyces 
blakesleeanus (Lipson et al. 1984).The physio
logical action is given in arbitrary units (a.u.). 
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Fig. 2. Action spectra of physiological responses (in arbitrary units, a.u.) depen
ding on the excitation of different photoreceptors. (1 a) Chlorophyll accumulation 
in dark-grown Scenedesmus (Brinkmann ~md Senger 1978a) and (1 b) after 2 h 
preillumination with BL (Brinkmann and Senger 1978b); (2) induction of conidia
tion in Alternaria by UV -B light and its reversion by BL (Kumagai 1983); (3) 
morphogenetic index L/W (ratio length to width offem protonema) in Dryopteris 
jilix-mas (Mohr 1956); (4) light-induced sensitization to geotropic stimulus in 
maize roots (Klemmer and Schneider 1979); (5) high-irradiance response (HIR) of 
light-inhibition ofhypocotyl elongation in Lactuca sativa (Hartmann 1967). 
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Fig. 3. Range offluences inducing UV-B-, UV-A- and BL-control
led reactions. Closed triangles indicate the following experiments: 
(1) phototropism of Phycomyces; (4) oxgen uptake of Chi orella; (8) 
anthocyan synthesis in Sorghum; (11) inhibition of spore germina
tion in Pteris vittata; (17) light-induced absorbance change (LIAC) 
in membrane fractions of corn and Neurospora; (26) adaptation of 
the photosynthetic apparatus in Scenedesmus. A description of the 
entire set of experiments is provided by Senger and Schmidt (1994) 

According to the action spectra ofUV-NBL responses and physico-chemical properties of the 
putative pigments, pterins (Galland and Senger 1988a) and flavins (Galland and Senger 1991) as 
well as carotenoids (Zeiger et al. 1993, Zeiger 1994), are favoured to be the chromophores of the 
UV -NBL receptors. Analysis of photoreceptor mutants of the fungus Phycomyces (Hoh! et al. 
1992a and 1992b) and investigations on the alga Euglena (Brodhuhn and Hader 1990, Schmidt et 
al. 1990, Sineshchekov et al. 1994) provide evidence for the involvement of pterins and flavins in 
controlling phototropism and phototaxis, respectively. Reduced Flavin (F ADH-) and methenyl
tetrahydrofolate have already been shown to constitute the chromophores of some DNA photo-
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lyases (reviewed by Kim and Sancar 1993). Recently, an interesting contribution was provided 
by Ahmad and Cashmore (1993), who showed that a protein homologous to the DNA photolyase 
exists in Arabidopsis. However, the association of the native protein with chromophore(s) and 
photoreceptor function remain to be proven. 

In general, three experimental approaches are advisable to elucidate the nature of the UV-AlBL 
receptors: generation and complementation of photoreceptor mutants (Adamse et al. 1988, 
Liscum et al. 1992, Chory 1991, 1992 and 1993), development of a LIAC-based purification pro
cedure (Widell 1987, Galland 1992), and the indirect access via the immediate effectors, e.g. G 
poteins (Schafer and Briggs 1986, Galland 1991, Terryn et al. 1993, Kaufman 1994). 

GREEN ALGAL RESPONSES TO UV-A AND BLUE LIGHT 

Since Kowallik (1965) introduced studies on the wavelength-dependent metabolism of Chlorella 
into the field ofUV-AlBL research, green algae are among the best studied objects in this field 
(Senger 1987a). Research in our group has focussed on the unicellular green alga Scenedesmus 
obliquus, particularly on UV -AlBL control of chlorophyll biosynthesis (Oh-hama and Senger 
1975, Senger 1987b, Dornemann 1992), expression of the genes encoding the apoproteins of the 
light-harvesting complex of photo system II (Hermsmeier et al. 1991 and 1992) and the develop
ment and light-adaptation of the photosynthetic apparatus (Senger and Bauer 1987, Humbeck et 
al. 1988). 

Action spectra of chlorophyll accumulation, synthesis of 5-aminolevulinic acid, respiration, car
bohydrate degradation, and accumulation of total cellular proteins (Fig. 4) display the important 
role ofUV-A and BL in regulating fundamental cellular processes in Scenedesmus. The absorp
tion characteristics of the UV-AlBL-receptor chromophore(s) are defined by peaks around 390, 
450 and 480 nm. 

An interesting finding was that, besides the UV -AlBL receptor, a second photoreceptor is present 
which absorbs at 410 and 650 nm (Fig. 4.2). This violetIRL receptor has a marked lower thresh
old as compared with the UV-AlBL receptor and operates in an antagonistical manner (compare 
Fig. 4.1 and 4.2). Activation of the UV -AlBL receptor results in an increase in chlorophyll, the 
apoproteins of the light-harvesting complexes and their messenger RNAs. The violetIRL recep
tor reverses these effects (Hermsmeier et al. 1991, Thielmann and Galland 1991, Thielmann et al. 
1991). Furthermore, the receptor antagonism dramatically influences the light-adaptation of the 
photosynthetic apparatus. 

Adaptation to BL induces a weak-light (shade) phenotype, i.e., among other things, decreased 
respiration and photosynthetic capacity, lower compensation point of photosynthesis and in
creased pigment contents combined with higher light-harvesting capacity relative to electron 
transport capacity. Cells adapted to RL, by contrast, exhibit a strong-light (sun) phenotype 
whose characteristics are opposite to those of the weak-light cells (Senger and Bauer 1987, 
Humbeck et al. 1988). 
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Fig. 4. Action spectra verifying UV-A 
IBL regulation of fundamental anabolic 
and catabolic processes in the unicellular 
green alga Scenedesmus obliquus. (1) In
duction of chlorophyll (Chl) biosynthesis 
under high fluence rates (2 mol m 2 s I; 

dotted line: after 2 h preirradiation) rela
tive to a dark control (ThielIilann et al. 
1991, Brinkmann and Senger 1980), (2) 
inhibition of Chl biosynthesis under low 
fluence-rate conditions (4.10 3 mol m 2 s 
I) relative to a dark control (Thielmann 
and Galland 1991), (3) formation of5-
aminolevulinic acid (ALA), the commit
ted step in Chl biosynthesis (Oh-hama 
and Senger 1975), (4) enhancement of 
mitochondrial respiration by UV -A and 
BL, (5) light-induced decrease in total 
carbohydrates, (6) light-dependent 
accumulation of proteins (Brinkmann 
and Senger 1978a). 

Considering all these data it can be 
stated that UV -A and BL regulate nu
merous essential processes within the 
Scenedesmus cell (Fig. 5). The different 
biochemical reactions promoted by 
UV -A and BL finally result in an en
hanced photosynthetic efficiency and 
the formation of components that con
stitute the photosynthetic apparatus. 

As in higher plants, the photosynthetic apparatus of algae and cyanobacteria use light between 
400 and 700 nm to drive photochemical reactions. To achieve optimum growth of algae and 
cyanobacteria under laboratory conditions, proper light sources have to be applied for the illumi
nation of autotrophic cultures. 

As indicated by the in vivo absorption spectra of selected members of cyanobacterial and algal 
taxa (Fig. 6), artificial lighting systems should generally emit high portions ofBL and RL to sat
urate photosynthesis. The majority of algal classes contain peripheral light-harvesting antennae 
that absorb BL and RL due to their contents of carotenoids, ChI a and Chi b or Chl c. In red al
gae and cyanobacteria, by contrast, phycobiliproteins serve as light antennae. Phycoerythrin and 
phycocyanobilin, which constitute the chromophores of the phycobiliproteins, extend the absorp
tion range covered by ChI a to the green and orange region of the spectrum (Fig. 6.1-6.3). This 
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should be taken into consideration if a lighting system is established for the cultivation of cyano
bacteria and red algae. By choosing one or the other type of artificial light sources, specific 
systematic groups of algae can be enhanced in growth in favour of others. 

\((0 d
\Qnce blue I ;ght 

red and blue light 

~t==:I high i r r adianc e 
blue light 

low irradiance 
red ond blue light 

low irradiance 
blue light 

Fig. 5. Target sites of photo control of intracellular processes in Scenedesmus obliquus. Low
and high-irradiance blue and red light regulate transcription of nuclear genes, e.g. genes encoding 
the light-harvesting chlorophyll alb-binding proteins, starch degradation, synthesis of soluble and 
structural proteins, formation of 5-aminolevulinic acid (ALA) and transformation of protochloro
phyllide a (pehl a) into chlorophyllide a. 

Apart from the importance of light as the primary source of energy, light plays the key role in 
photomorphogenesis and light-adaptation as described above. Beside the irradiance the ratio of 
BL to RL determines whether the photosynthetic apparatus is directed towards weak- or strong
light acclimation. During acclimation pronounced changes occur in the molecular organization 
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of thylakoid membranes. 
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Fig.6. In vivo absorption spectra of the 
cyanobacteria Anacystis nidulans (1) and Toly
pothrix spec. (2), the red alga Porphyridium 
cruentum (3), Euglena gracilis (4), the diatom 
eyciotella meneghiniana (5) and the green 
alga Scenedesmus ob/iquus (6). 

Therefore, in experiments dealing with 
the composition of the photosynthetic apparatus, 
the spectral distribution of the incident light 
should favour the absorption and excitation of 
relevant photoreceptors. Attention also has to 
be given to the intensity of the light source. On 
one hand, the applied fluence rates must provide 
sufficient net photosynthesis and, on the other 
hand, fluence rates inducing photo inhibition or 
even photo destruction of pigment-protein com
plexes must be avoided. Therefore, it is 
recommended to apply irradiance slightly ex
ceeding the light-saturation point of photosyn
thesis. This ensures optimum growth and saves 
energy. The light-saturation point is usually 
determined by plotting photosynthetic oxygen 
evolution against irradiances. Since light-satu
ration points vary greatly among different algal 

750 species, it is necessary to carry out this proce-
dure for each species of interest. 

The aquatic environment of the algae is characterized by an imbalance of the spectral distribution 
depending on the type of water, e.g. blue-, green- and orange/red-water seas (Jeffrey 1981 and 
1984). A comparison of the spectrum of solar light with the spectrum of a blue-water sea in 5 m 
depth shows that the spectrum is shifted in favour of shorter wavelengths (Fig.7.1 and 7.2). In 
the case of laboratory cultures, absorption of water can be neglected since distilled water is used 
for the preparation of culture media and applied volumes are to small to absorb light signifi
cantly. For the set up of experiments which do not aim at daylight simulation, the choice of 
commercial available lamp types depends only on criteria discussed in the preceding chapters. 

Emission spectra of selected lamp types are collected in Fig. 7. Due to their spectral imbalance, 
common incandescent lamps are fairly useless as a light source for photosynthetic organisms 
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(Fig. 7.3). Many laboratories use fluorescent lamps because oflow running costs, long lifetime, 
high luminous efficiency and the availability of a great variety oflamp types with different emis
sion properties. However, a substantial decrease in output necessitates replacement after 
approximately one year. The BIOLUX lamp (Osram, Berlin) simulates solar light to a certain 
degree (Fig. 7.4) and is recommendable for many biological applications. Because of its bal
anced spectral emission the BIOLUX lamp is a useful light source for the cultivation of 
cyanobacteria and red algae which show a high absorption throughout the entire spectrum (confer 
Fig. 6). The FLUORA lamp (Osram, Berlin) is well suited for cultivation of Chi alb-type plants 
and algae since this lamp mimics the absorption spectrum of their photosynthetic apparatus 
(Fig. 7.5). 

Fluorescent lamps have high luminous efficiencies but do not emit high irradiances of light. Un
der certain conditions where high irradiances are demanded, e.g. for the illumination of aquaria 
deeper than 50 em, metal-halide or mercury lamps should be prefered to fluorescent lamps. For 
aquarists a number of mercury-lamp types, e.g. the HQL series (Osram, Berlin; Fig. 7.6) are avai
lable which provide both, high irradiances and an unaffected colour of aquatic plants and ani
mals. Xenon lamps also provide high irradiances of light with a spectral emission similar to so
lar light. However, they emit high amounts ofUV-C, UV-B and infra red (lR) and produce 
ozone which has to be exhausted. Their use requires UV- and heat-absorbing filters which again 
decrease luminous efficiency and increase costs. 

Experimental ecological plant research necessitates sophisticated sunlight simulators which pre
cisely mimic the solar radiation with respect to intensity, spectral balance and direction of light 
(Warrington et al. 1978, Holmes 1984, Bjorn 1994, Caldwell and Flint, this volume). 

The best approximation of a standard daylight spectrum, so far known, renders a sunlight simula
tor developed by Seckmeyer and Payer (1993). Daylight simulation is achieved by the combina
tion of 184 lamps of the metal-halide, quartz-halogen, BL-emitting and UV -B-emitting type, fil
ters and reflectors in an appropriate spatial arrangement. Although the growth chamber of this 
apparatus is laid out for the cultivation of land plants it should be possible to adapt it to the culti
vation of algae. However, simulation of fluctuations of the solar spectrum depending on meteo
rological and astronomical parameters remains an tmsolved problem. 

CONCLUSIONS 

As for higher plants, growth and development of algae depend on light. Besides the light neces
sary to facilitate photosynthesis, UV -AlBL is of specific necessity for the normal development of 
algae. Spectral output of artificial light sources should match as close as possible the absorption 
cross section of the pigments responsible for photosynthesis and morphogenesis. The irradiances 
of the incident light should not exceed saturating values for photosynthesis to avoid 
photooxidation. By choosing the appropriate light source one or the other taxonomic group can 
be enhanced or suppressed in growth and development in comparison to others. 
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Fig. 7. Comparison of the spectral energy 
distribution of solar light in the air (1) and in 
5 m depth of a blue-water sea (2) with the 
corresponding spectra of technical light 
sources (3-6). (3) Spectrum of incandescent 
lamp; (4) fluorescent lamp BIOLUX 72 
(Osram, Berlin); (5) fluorescent lamp 
FLUORA 77 (Osram, Berlin), the dotted 
line indicates the in-vivo absorption spectra 
of the unicellular green alga Scenedesmus 
obliquus; (6) mercury lamp HQL DE LUXE 
(Osram, Berlin). With respect to the spectral 
emission the BIOLUX light source is suit
able to mimic natural daylight, while the 
FLUORA lamp is a recommendable light 
source for illuminating land plants and 
aquatic specimen. The HQL DE LUXE 
lamp exhibits a high output in the short 
wavelength range and between 520 and 
620 nm and therefore provides maximum 
excitation of insect rhabdomer cells and reti
nal cells of mammals. As indicated by (3) 
incandescent light is not sufficient to cover 
the spectral range of photobiological pro-

cesses. 
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REQUIREMENTS OF BLUE, UV-A, AND UV-B LIGHT FOR NORMAL GROWTH 
OF HIGHER PLANTS, AS ASSESSED BY ACTION SPECTRA FOR GROWTH AND 

RELATED PHENOMENA 

T. Hashimoto 

Department of Life Science, Kobe Women's University, 
Higashisuma, Suma-ku, Kobe 654, Japan 

INTRODUCTION 

It is very important for experimental purposes, as well as for the practical use of plants 
when not enough sunlight is available. To grow green higher plants in their normal forms 
under articicial lighting constructing efficient and economically· reasonable lighting systems is 
not an easy task. One possible approach would be to simulate sunlight in intensity and the 
radiation spectrum, but its high construction and running costs are not likely to allow its use 
in practice. Sunlight may be excessive in irradiance in some or all portions of the 
spectrum. Reducing irradiance and removing unnecessary wavebands might lead to an 
economically feasible light source. However, removing or reducing a particular 
waveband from sunlight for testing is not easy. Another approach might be to find the 
wavebands required for respective aspects of plant growth and to combine them in a proper 
ratio and intensity. The latter approach seems more practical and economical, and the aim of 
this Workshop lies in advancing this approach. I summarize our present knowledge on the 
waveband requirements of higher plants for the regions of blue, UV-A and UV-B. 

BLUE LIGHT (BL) 

The significance of this waveband was first noticed in phototropism, a response to light 
direction in which shaded and illuminated plant organs grow at different rates, resulting in 
curvature towards or away from a light source (lino, 1990). Although red light, mediated 
through phytochrome, can induce phototropic responses under special circumstances (Parker et 
aI., 1989), it seems probable that specific BL photoreceptors playa prominent role in most 
light-oriented growth movements as well as in many photoregulated, turgor-driven responses, 
such as nastic movements, leaf solar tracking (Koller, 1990) and stomatal opening (Zeiger, 
1983). Plant movements have been popular objects of study because they occur rapidly and 
in many cases are reversible. Nonetheless, in spite of much exquisite physiology, it has not 
yet been possible to identify positively and BL photoreceptors involved in these responses. 
This is not surprising, given the likelihood that such photoreceptors are present in low 
abundance as well as the number of overlapping chromophores in this portion of the 
spectrum. Flavoproteins are probable candidates for BL photoreceptors (Short and Briggs, 
1994). Recent evidence obtained with a mutant of Arabidopsis suggests that a putative BL 
photoreceptor associated with hypocotyl elongation may be closely related to a flavoprotein 
enzyme responsible for light-mediated repair of cyc10butane phyrimidine dimers in DNA 
(Ahmad and Cashmore, 1993). Still, other studies continue to SUppOlt the possibility that 
pterins (Galland and Senger, 1988) or carotenoids (Quinones and Zeiger, 1994) playa role in 
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some BL responses. 
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Fig. 1. Action spectra for first-positive phototropic curvature in the oat coleoptile and 
alfalfa hypocotyl. (Adapted from Thimann and Curry 1960, Baskin and lino 1987). 

Assessing the contribution of BL photoreceptors in a white light environment is complicated 
by numerous reports that the activity of BL phtoreceptors is influenced by additional 
photoreceptors absorbing in other spectral bands. For example, red light counteracts BL
induced photoepinastic orientation of rice and wheat leaves but has no effect by itself (Table 
1; Inada, 1969; Kimura, 1977). This interaction is presumed to underlie the intermediate 
nastic response observed under white light. Phytochrome may be involved in many 
interactions with BL photoreceptors. In fact, formation of Pfr either before or immediately 
after a BL pulse suppressed the BL-induced unrolling of etiolated rice leaves (Sasakawa and 
Yamamoto, 1980). However, long wavelength suppression of BL-induced tea leaf orientation 
activity peaked at 600 nm, while wavelengths of 620 nm or longer were inactive (Aoki et al., 
1981). 

TABLE 1. Photoepinasty of the 2nd leaf of intact rice seedling~, cv. T 136 

Light treatments Leaf blade angle (degree) 

Dark control 
Blue 
Red 
White 

2.9 ± 3.5 
67.5 ± 14.1 
4.6 ± 5.5 
14.6 ± 5.0 

11 W m-2s-1 PAR for 3 days, + S.D. (n = 20) (Inada, 1969) 
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TABLE 2. Light induced unrolling of the 2nd leaf intact rice seedlings, 
cv. Norin No. 25 

Light treatments Diameter of rolled leaf 
(mm ± S.D.) 

Dark control 
Blue 
Green 
Red 
White 
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Fig. 2. Response spectra for photonastic inclination of rice and wheat leaf blades 
(from Inada, 1969 and Kimura, 1974). For rice and wheat, respectively, irradiation, 3 
W m-2 x 72 h and 0.625 W m-2 x 40 h; leaf blade angles of non-irradiated control, 2° 
and 20°; light-induced maximum increases in angle (100%), 26° and 25°. 

Blue light-induced growth inhibition of the stem is a phenomenon distinct from the 
phototropism of the stem, although the curvature involves a growth inhibition of the lighted 
side and a growth promotion of the shaded side of the stem. While a phototropic curvature 
appears approximately 30 minutes after the onset of light, stem growth inhibition occurs in 
some minutes (Fig. 3). Further, it was found that a phototropically null mutant of 
Arabidopsis showed normal hypocotyl growth inhibition, while another mutant lacking growth 
inhibition showed normal phototropic response (Liscum et al. 1992). Although the so-called 
high irradiance response (HIR) has been suggested to be responsible for BL effect as well 
(Wildermann et al. 1978), and may occur in the seedling stage, there certainly exist 



BL-specific actions, which are separable from phytochrome actions by faster appearance and 
disappearance of growth inhibition after a pulse (Fig. 3) (Gaba and Black 1979, Behringer 
and Davies 1993). This was also shown by phytochrome-deficient mutant seedlings of 
Arabidopsis (Chory 1993, Goto et al. 1993). An action spectrum for the hypocotyl growth 
inhibition of the mutant completely lacks action at above 500 nm, while that for a wild type 
has peaks which suggest an occurrence of a low photon response and HIR of phytochrome 
(Fig. 4). In the aurea tomato mutant the accumulation of transcripts from nuclear genes for 
thylakoid proteins requires BL even when saturated with RL (Palomares et al. 1991). 
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Fig. 3. Early time course of the light growth inhibition of etiolated pea seedlings. 
(Adapted from Behringer and Davies 1993). 

In considering light sources for photoautotrophic growth of plants, our interest is to what 
extent BL influences plant growth in the background of sufficient photosynthetically active 
radiation (PAR). Some attempts to see the effects of BL in sunlight have been made. From 
sunlight or intense white light from "Youkou Lamps" (DR400T, Toshiba, Tokyo) in a 
phytotron the BL waveband was removed or reduced in intensity by filtering with yellowish 
polyacrylic resin or polyvinyl chloride sheet (Nakmnura et al. 1977, Yamada et al. 1977). 
The results showed increased growth of the stem and petiole in Japanese honeywort, celery 
and bean, and a curling of the leaf blade in celery. But in these experiments UV-A and -B 
were along with BL removed, but it was not indicated whether UV -A and -B were removed 
in the control as well; thus it is unclear whether or not these are BL-specific action. 
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Fig. 4. Action spectra for the light growth inhibition of the hypocotyl in wild-type 
(solid line) and phytochrome-deficient mutant (hy2) (broken line) of Arabidospsis 
thaliana. (From Goto et al. 1993). 

In another line of experiments (Inada and Katsura 1977), rice, soybean, tomato, and cucumber 
were grown for 38 days under WL from "Youkou Lamps" witli or without a small BL 
supplement (Fig. 5). Extra BL caused significant photomorphogenetic effects (e.g. 
suppression of shoot extension in soybean and rice (Table 3) and increase of stem thickness. 
In tomato, general growth was promoted as shown by an increase of dry weight, while no 
apparent suppression in plant height was observed. 

These results show BL has specific morphogenetic effects. The BL actions are on balance 
with OL or RL, and even under intense WL from metal halide lamps or likes, BL supplement 
is required. 

UV-A LIGHT 

Many action spectra with their main peak in the blue region (ca. 450 nm) have a subpeak in 
the UV-A region (ca. 370 nm), and both peaks are assumed to be due to the same 
photoreceptor, for which the name blue-near UV photoreceptor or cryptochrome has been 
coined. Such a UV -A requirement may be satisfied by BL. However, there are some other 
UV -A requirements which are not replaced by BL. In a frame covered with a polyvinyl 
chloride sheet to cut off UV of wavelengths below 400 nm, spinach grew better than in a 
control frame covered with UV -transparent sheet (Hasegawa et al. 1979), suggesting a general 
growth inhibition by the solar UV. Installment of a UV-A source (black light) in the former 
frame (solar UV -A eliminated), however, increased the growth of spinach (Shibata 1993), 
whereas an inclusion of a UV-B source inhibited growth. In a similar experiment with 
polyvinyl sheet frames deprived of solar UV, by contrast, tomato and radish plants grew less 
than in control frames with solar UV transmitted (Tezuka et al. 1993). The contrasting 



results with the solar UV elimination between Hasegawa et ai's and Tezuka et al's 
experiments seem due to the different sensitivities to UV -A or UV -B of the particular 
plants studied. Since in the UV elimination experiments described above as well as the 
experiment with a UV supplement to white light, sufficient amounts of BL and RL are 
supplied from sunlight, the results may suggest the occurrence of UV -A specific action. The 
construction of an action spectrum of UV -A in the presence of intense white light is required. 
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Fig. 5. Spectral energy distribution of the main light source (Youkou Lamps, 400 
watts, Toshiba, Tokyo) (solid line) and of the light supplemented with BL from 
fluorescent tubes (broken line). The colour temperatures: 400v K and 4500 K, 
respectively. (from Inada and Katsura 1977). 

Photoreactivation of UV damage is an important action not to be neglected in this spectral 
region. However, few action spectra have been determined with living higher plants. Figure 6 
shows action spectra for photoreactivation determined with enzymes isolated from plant 
tissues, and indicates the necessity of light of this waveband in relation to UV -B. 

TABLE 3. Effects on plant morphogenesis of BL supplemented to white light 
"Toshiba Youkou Lamps" 

Plants Plant height (%) Dry weight (%) DW/height (%) 

Rice 
Soybean 
Tomato 
Cucumber 

92** 
84** 
104 
87 

99 
106 

138* 
98 

108 
126 
133 
113 

White light control = 100%, * and ** denote significant differences at 5% and 1% 
levels, respectively. White light without BL supplement, 230 W mo2. Day: 15h,25OC; 
night: 9h, 20°C. 38 days culture. (Inada and Katsura, 1977). 
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Fig. 6. Action spectra for photoreactivating enzymes isolated from Pinto bean sprouts 
(Saito and Werbin 1969) and maize pollen (Ilcenaga et al. 1974). 
UV-B LIGHT 

This waveband exerts various actions: suppression of the over-all growth of plants, reducing 
cell division or elongation; cell damage such as cell collapse and tissue browning; and 
reduction of biomass production (Caldwell 1971, Tevini and Teramura 1989). Besides, this 
waveband causes photomorphogenesis, and induces the synthesis of anthocyanin and other 
flavonoids alone or in coaction with RL absorbed by phytochrome (Beggs et al. 1986). In 
intact plants flavonoids are synthesized in the epidermis, and serve as a UV-B cut-off filter to 
the light entering the tissue (Schmelzer et al. 1988, Tevini et aI. 1991, Cen and Bornman 
1993). 

The flavonoid-inducing effect of this waveband is established by action spectra (Fig. 7). They 
have peaks at ca. 290 nm, differing from the absorption of DNA or RNA, and suggest the 
occurrence of a particular UV-B photoreceptor. This UV-B action is manifested or enhanced 
by phytochrome action (Yatsuhashi and Hashimoto 1985), and further enhanced by BL 
(Drumm and Mohr 1978, Duell-Pfaff and Well mann 1982). That the flavonoid induction by 
UV-B really occurs in the natural growing conditions was shown by the effects of UV-B 
supplements to artificial WL (Adamse and Britz 1992, Arakawa et aI. 1985, Maekawa et aI. 
1980, Cen and Bornman 990) and supplement to sunlight (Flint et al. 1985). The findings that 
UV -B elimination from sunlight greatly reduced anthocyanin synthesis in rose flowers and 
eggplant fruits (Mihara et al. 1973, Tezuka et al. 1993) support' the view that the solar UV-B 
produces flavonoid synthesis under the field conditions. Lignin biosynthesis, whose early 
steps (phenylpropanoid pathway) are shared with flavonoid synthesis, may be under the 
influence of UV-B, since UV-B makes plants tougher (Hashimoto and Tajima 1980). 
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When given at a moderate intensity together with sufficient photosynthetically active radiation 
(PAR), UV-B increases the thickness of the leaf (Cen and Bornman 1990, 1993) and 
chlorophyll content (Adamse and Britz 1992, Hashimoto and Tajima 1980), and does not 
suppress photosynthesis (Adamse and Britz 1992, lBornman 1989, Flint et al. 1985) except for 
sensitive species, strains or varieties. Suppressed growth of the hypocotyl and promoted 
expansion of the leaf or cotyledons are characteristics of morphogenetic effects of light. 
UV-B suppresses the growth of the hypocotyl of cucumber, eggplant and radish (Ballare et 
al. 1991, Hashimoto and Tajima 1980) without causing growth inhibition of the cotyledons. 
The findings with light-grown cucumber that the cotyledons perceive light and the 
hypocotyl responds (Ballare et al. 1991) strongly suggest that it is a normal 
photomorphogenetic action of UV-B. In this UV-lB action a small photon leved of UV-B is 
enough. Wavelengths over 300 nm may be effective. Kondo (Hashimoto et al. 1993) found 
that an addition of 310 nm light at 0.1 to 1 Ilffiol m-2 

S-1 promoted the growth of cucumber 
first leaf under intense white light (500 Ilmol m-2 S-I), while 290 nm light at the same photon 
levels showed neither promotion nor inhibition. Each wavelength was inhibitory when 
given alone. Although no action spectrum is available yet for either hypocotyl inhibition or 
cotyledon promotion, the promotive effect of 310 nm distinguishes the effect of the longer 
wavelength region of UV-B from the general growth inhibitory effects of UV-B. Thus, UV-B 
is assumed to exert true photomorphogenetic actions in addtion to the deleterious 
effects. This view has been proposed by Hashimoto and Tajima (1980), Ballare et 
al.(1992), and Ensminger (1993). 

However, it is indeed true that UV -B causes damage in plants. The action spectra for 
the formation of pyrimidine dimers and (6-4)photoproduct, as examined with a human cell 
culture or calf thymus DNA solution, peak at about 260 nm and extend their longer 
wavelength ends into the UV-B region (Matsunaga et al. 1991, Rosenstein and Mitchell 
1987), and it is assumed that this is also the case with plants. Coiling, a UV -B-induced 
abnormal growth of the etiolated sorghum first internode (Fig. 8), closely correlates with the 
amount of thymine dimer formed by the irradiation (Tsurumi et al. unpublished data), and the 
action spectrum for coiling corresponds with the absorbance of DNA. An action spectrum for 
anthocyanin synthesis inhibition shows a similar curve (Fig. 8) (Hashimoto et al. 1991, 
Well mann et al. 1984). 

Thus, the UV -B region is the crossing zone of the deleterious effects and the normal 
photo morphogenetic actions, as indicated by the distinct action spectra (Figs. 7, 8). The 
photon level of UV -B required for the photomorphogenetic actions is lower than for the 
deleterious effects of UV-B (Fig. 9). The photon ratios (curve A1curve B) required for 
threshold induction are estimated from Fig. 9 as 1/380, 111400, and 1/6500, respectively, at 
280, 290, and 297 nm. The trend of the values implies that at above 300 nm the deleterious 
effects of UV -B are not likely to occur at the photon levels required for the 
photomorphogenetic effects of UV-B. The presence of sufficient PAR and carbon dioxide 
ameliolate the harmful effects of UV-B (Adamse and Britz 1992, Cen and Bornman 1990, 
Nouchi 1993, Teramura et al. 1980). The amelioration of UV -B damage by PAR involves 
photoreactivation by UV-A and BL and other unknown action mechaninsms of visible light in 
addition to an increase of the biochemical UV-B filter flavonoids. Thus, to obtain the 
beneficial effects of UV -B and minimizing potential harmful effects, a long-wavelength UV-B 
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source should be installed at small UV-BIPAR ratios. 
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Fig. 9. Distinct effective waveband and different photon effectiveness between the 
photo morphogenetic actions and deleterious effects of UV -B, as represencted by 
anthocyanin induction (A) and inhibition (B). (Adapted from Hashimoto et al. 1991). 

Since higher plants have developed their present characteristics under sunlight during the long 
process of evolution, it is quite natural that they adapted themselves to the present state of 
light environment. Higher plants seem to require all the spectrum bands, except for the band 
wavelengths 800 nm, of the sunlight coming on the Earth's surface. Blue, UV -A and UV-B 
light have their respective specific photomorphogenetic actions for higher plants, and are not 
replaced by light of other wavebands. These wavebands of radiation cooperate (UV -V, RL 
and BL) or counteract (BL and OL or RL) with light of other wavebands, and their 
requirements probably depend on the amount of other light. The situations make it difficult to 
draw a clear formula for lighting. We are required to take a case by case strategy, and 
gradually to obtain a better combination of individual wavebands. The processes of the 
development of lighting resembles that of prescription of a culture medium. 

For the first step toward lighting formulation, the quantity of PAR should be fixed, because 
PAR seems to have an absolute quantity requirement. At this step the balance between the RL 
and BL components in the PAR should be considered. At the n.ext step UV-A should be taken 
into account. It is less expensive in installment and operation than UV -B, although the 
functions of UV-A are not clear yet. Finally UV-B comes into consideration. To utilize the 
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beneficial effects of UV -B and minimizing its deleterious effects, caution should be exercised 
in the selection of its intensity and waveband. 
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EFFECTS OF LIGHT ON BRAIN AND BEHAVIOR· 

George C. Brainard 

Department of Neurology, Jefferson Medical College, Thomas Jefferson University, 
Philadelphia, Pennsylvania 19107 

INTRODUCTION 

It is obvious that light entering the eye permits the sensory capacity of vision. The human 
species is highly dependent on visual perception of the environment and consequently, the 
scientific study of vision and visual mechanisms is a centuries old endeavor. Relatively new 
discoveries are now leading to an expanded understanding of the role of light entering the eye -
in addition to supporting vision, light has various nonvisual biological effects. Over the past 
thirty years, animal studies have shown that environmental light is the primary stimulus for 
regulating circadian rhythms, seasonal cycles, and neuroendocrine responses (Aschoff, 1981a; 
Binkley, 1990; Reiter, 1991). As with all photobiological phenomena, the wavelength, intensity, 
timing and duration of a light stimulus is important in determining its regulatory influence on the 
circadian and neuroendocrine systems (Aschoff, 1981 b; Cardinali et aI., 1972; Takahashi et aI., 
1984; Brainard et aI., 1983; Brainard et aI., 1986). Initially, the effects :>f light on rhythms and 
hormones were observed only in sub-human species. Research over the past decade, however, 
has confirmed that light entering the eyes of humans is a potent stimulus for controlling 
physiological rhythms (Lewy et aI., 1980; Moore-Ede et aI., 1982; Wurtman et aI., 1985; 
Czeisler et aI., 1986). The aim of this paper is to examine three specific nonvisual responses in 
humans which are mediated by light entering the eye: light-induced melatonin suppression, light 
therapy for winter depression, and enhancement of nighttime performance. This will serve as a 
brief introduction to the growing database which demonstrates how light stimuli can influence 
physiology, mood and behavior in humans. Such information greatly expands our understanding 
of the human eye and will ultimately change our use of light in the human environment. 

STIMULA nON OF THE CIRCADIAN AND NEUROENDOCRINE SYSTEMS BY 
LIGHT 

In most vertebrate species, it is known that light enters the eyes and stimulates the retina. Nerve 
signals are sent from the retina to the visual centers of the brain and permit the sensory capacity 
of vision. In addition, neural signals are sent from the retina into the hypothalamus, a non-visual 
part of the brain. The hypothalamus is a complex neural region that influences or controls many 
basic functions of the body including hormonal secretion, core temperature, metabolism and 
reproduction as well as higher cognitive functions such as memory and emotions (Morgane and 
Panskep, 1979). Information about environmental light is sent from the retina to a specific part 
of the hypothalamus, the suprachiasmatic nucleus (SeN) (Pickard and Silverman, 1981; Moore, 

• This manuscript previously published in Biologic Effects of Light, pg. 133-154, 
1992, and published with pennission of the Walter de Gmyter & Co., Berlin, Germany. 
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1983). This part of the brain is considered to be a fundamental part of the "biological clock", or 
circadian system, which regulates the body's physiological rhythms. The circadian system is 
thought to be responsible for controlling daily rhythms such as sleep and wakefulness, body 
temperature, honnonal secretion and other physiological parameters including cognitive 
function. It is now clear that light is the primary stimulus for regulating the circadian system, 
although other external stimuli such as sound, temperature and social cues may also influence 
the body's timing functions (Aschoff, 1981 a; Binkley, 1990). 

The SCN relays retinal infonnation to many of the major control centers in the nervous system 
(Moore, 1983). One nerve pathway that carries non-visual infonnation about light extends from 
the SCN to the pineal gland via a multisynaptic pathway with connections being made 
sequentially in the paraventricular hypothalamus, the upper thoracic intennediolateral cell 
column, and the superior cervical ganglion (Moore, 1983; Klein et aI., 1983). Cycles oflight 
and darkness relayed by the retina entrain SCN neural activity which, in turn, entrains the 
rhythmic production and secretion of melatonin from the pineal. In humans and all other 
vertebrate species studied to date, high levels of melatonin are secreted during the night and low 
levels are released during the day (Binkley, 1990; Reiter, 1991; Lewy et aI., 1980; Vaughan et 
aI., 1976). 

THE EFFECTS OF LIGHT INTENSITY AND WAVELENGTH ON MELATONIN 
SUPPRESSION 

In addition to entraining melatonin secretion from the pineal gland, light can have an acute 
suppressive effect on melatonin. Specifically, exposure of the eyes to light during the night can 
cause a rapid decrease in the high nocturnal synthesis and secretic;m of melatonin (Brainard et aI., 
1983; Klein and Weller, 1972; Rollag and Niswender, 1976). Early studies on humans did not 
demonstrate the acute suppressive influence of light on plasma melatonin (Vaughan et aI., 1976; 
Jimerson et aI., 1977; Wetterberg, 1978; Vaughan et aI., 1979). However, Lewy and colleagues 
(1980) demonstrated that exposing the eyes of normal volunteers to 2500 lux of white light 
during the night induced an 80% decrease in circulating melatonin within one hour. In contrast, 
volunteers exposed to 500 lux of white light exhibited no significant melatonin suppression 
(Lewy et aI., 1980). Earlier attempts at suppressing melatonin in humans with light failed when 
investigators used typical indoor light levels of 100 to 800 lux (Vaughan et aI., 1976; Jimerson et 
aI., 1977; Wetterberg, 1978; Vaughan et aI., 1979). Whereas such typical room light would be 
sufficient for suppressing melatonin in many animal species (Binkley, 1990; Reiter, 1991; 
Brainard et aI., 1983; Klein and Weller, 1972; Rollag and Niswender, 1976), and would be 
adequate for human vision, it was not enough to suppress melatonin in those experiments. 
Simply put, it takes much more light to suppress melatonin than is required for vision. The 
discovery that much brighter light is needed to suppress melatonin in humans provided the 
groundwork for numerous studies on the internal responses of humans to bright artificial light. 
However, the notion that only "bright" light can drive neuroendocrine and circadian responses is 
not entirely accurate. 

To begin with, the tenn "bright" refers to a subjective visual sensation and is thus a relative 
descriptor (Kaufman, 1984). A 2500 lux light indoors indeed appears "bright" relative to typical 
indoor levels ranging from 100 to 800 lux. In contrast, 2500 lux of light outdoors is relatively 
dim compared to daylight at high noon which reaches 100,000 lux (Thorington, 1985). Several 
years after it was discovered that light at 2500 lux can suppress melatonin in humans, a study 
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was done to more precisely determine the dosages of light needed to suppress melatonin in 
normal volunteers (Brainard et aI., 1988). In that study, six normal males were exposed to 
carefully controlled intensities of monochromatic green light at 509 run for one hour during the 
night. Specifically, the volunteers were continuously exposed to the experimental light between 
02:00 and 03 :00 hours with their pupils fully dilated by a mydriatic agent, their heads held 
steady relative to the light source by an ophthalmologic head holder, and with translucent white 
integrating spheres covering both eyes. This procedure produced a constant and uniform 
illumination of the whole retina during the entire light exposure. The data from this·experiment 
(Figure 1) demonstrated that light affects a human hormone in a dose-response fashion: i.e., the 
brighter the photic stimulus the greater the suppression of melatonin (Brainard et al., 1988). 

It is interesting that all of the stimuli used in this study activated the visual system: both the 
volunteers and the experimenters sawall the different light intensities and accurately reported 
them to be green. The lower light intensities, however, did not change hormone levels whereas 
the higher intensities induced a 60-80% decrease in this hormone. Thus, light that activates 
vision does not necessarily cause neuroendocrine change. It appears to be generally true in both 
animals and humans that much more light is needed for biological effects than for vision. The 
data shown in Table 1 provide the photometric and radiometric values for the stimuli used in 
constructing this dose-response function. 
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Fig. 1. The dose-response relationship between green monochromatic light (509 run, 10 
run half-peak bandwidth) exposure of normal volunteers eyes and suppression of the 
hormone melatonin (Brainard et aI., 1988). Data points indicate mean ± SEM. 
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TABLE 1 Radiometric and Photometric Stimuli Used in the Melatonin Dose-Response Curve 
(Brainard et aI., 1988) 
/lW/cm2 photons/cm2 photopic lux scotopic lux % melatonin suppression 

0.01 9.19 x 1013 0.03 0.17 -9.67 
0.3 2.76 x lOIS 1.03 5.25 1.83 
1.6 1.47 x 1016 5.50 27.98 37.33 
5.0 4.59 x 1016 17.18 85.90 51.67 

13.0 1.19 x 1017 44.66 227.37 60.67 

The demonstration of the dose-response function for light suppression of melatonin in humans 
produced an unexpected result: very bright light is not necessarily needed for melatonin 
suppression. As demonstrated by Table 1, the mean threshold illUminance for suppressing 
melatonin was between 5 and 17 lux in normal volunteers - a level of illumination equal to civil 
twilight and well below typical indoor light. This means that under the proper conditions, 25 to 
100 times less light can suppress melatonin than originally thought (Lewy et aI., 1980). Why did 
ambient room light at levels much higher than 17 lux not suppress melatonin in earlier 
experiments? In those early studies (Lewy et aI., 1980; Vaughan et aI., 1976; Jimerson et aI., 
1977; Wetterberg, 1978; Vaughan et aI., 1979), neither the exposure conditions nor the light 
stimuli were optimized. Often the experimental light stimulus consisted of turning on the 
overhead light provided with the experimental room. In almost any given room, it is possible to 
vary the light illuminance entering the eyes by a factor of 10 simply by changing the direction of 
gaze. Thus, in a room characterized as having "typical" illumination levels of 500 lux, the 
occupants may be able to see up to 500 lux if they look directly towards the light fixtures, but if 
they look at the floor or walls, this light reaching their eyes may be as low as 50 lux. 
Furthermore, the pupil of the eye adjusts dynamically to further restrict the amount of light 
which reaches the retina. A maximally restricted pupil can reduce the light reaching the retina to 
as little as one sixteenth of the light falling on the cornea (Sliney and Wolbarsht, 1980). In 
addition, the amount of the retina exposed to the light stimulus varies greatly with the geometry 
of the light source and the relative direction of gaze. A recent study by Gaddy (1992) and 
colleagues has shown partial retinal exposure is less effective compared to the whole retinal 
exposure for suppressing melatonin (Gaddy et aI., 1992). Finally, the amount of light entering 
the eye can be further reduced by shadowing of the cornea by the bony orbit, squinting and eye 
blink. Thus, both behavioral and ocular factors can functionally reduce the amount of light 
reaching the retina to a level where it is not effective in suppressing melatonin levels. In the 
early studies, we presume that no efforts were made to control pupil size, direction of gaze, and 
retinal field exposure since none of these experimental details were reported. Hence, in those 
experiments "ordinary room levels of illumination" did not suppress melatonin (Lewy et aI., 
1980; Vaughan et aI., 1976; Jimerson et aI., 1977; Vietterberg, 1978; Vaughan et aI., 1979) and 
only when much brighter light was used (Lewy et aI., 1980) could hormone production be 
altered. However, it is clear that very low levels of light can indeed suppress melatonin when 
the exposure factors are optimized (Brainard et aI., 1988). 

In addition to exposure factors and light intensity being critical in determining if a light stimulus 
will suppress melatonin, the spectral quality of light is important in determining its relative 
biological impact. Studies done on the effects of different wavelengths on hamsters, rats and 
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mice suggest that wavelengths in the blue and green portion of the spectrum have the strongest 
impact on circadian and neuroendocrine regulation (Cardinali et aI., 1972; Takahashi et ai. 1984; 
Brainard et aI., 1984; Brainard et aI., 1985; Vaughan et aI., 1985; Brainard et aI., 1986; Bronstein 
et aI., 1987; Podolin et aI., 1987; Thiele and Meissl, 1987; Millette et aI., 1987; Benshoff et al., 
1987; Brainard et aI., 1987; Brainard et aI., 1991a). Some data have supported the hypothesis 
that the rod photopigment rhodopsin is the primary receptor for circadian and neuroendocrine 
regulation (Cardinali et aI., 1972; Takahashi et ai. 1984; Brainard et aI., 1984; Podolin et al., 
1987; Thiele and Meissl, 1987; Benshoff et aI., 1987; Brainard et aI., 1987). In contrast, other 
data have suggested that one or more cone photopigments may be involved in these regulatory 
effects (Brainard et aI., 1984; Podolin et al., 1987; Thiele and Meissl, 1987; Millette et aI., 1987; 
Benshoff et aI., 1987; Brainard et aI., 1987). It is important to note that while the highest 
sensitivity is in the blue-green range, this does not preclude other wavelengths from participating 
in circadian and neuroendocrine regulation. For example, in terms of melatonin suppression, 
short wavelengths in the ultraviolet region of the spectrum (Podolin et al., 1987; Benshoff et aI., 
1987; Brainard et aI., 1987; Brainard et aI., 1991a) and longer wavelengths in the red portion of 
the spectrum are quite capable of suppressing melatonin in rodents if the intensity is sufficiently 
high (Vanecek and Illnerova, 1982; Nguyen et aI., 1990; Broker et aI., 1990). Further studies are 
required to conclusively identify what specific photoreceptors and photopigments are involved in 
regulating the circadian and neuroendocrine systems in animals. 

Only one study has specifically examined wavelength regulation of melatonin in humans 
(Brainard et aI., 1988). That study suggested that the peak sensitivity for melatonin suppression 
is in the blue-green range as seems to be the case in some lower mammals. It is premature, 
however, to draw any conclusions as to what photoreceptors are involved in any nonvisual 
physiological regulation in humans. 

USE OF LIGHT TO TREAT WINTER DEPRESSION 

While research over the past decade has proceeded on the biological effects of light in humans, 
concurrent studies have tested the use of light as a therapeutic tool for improving mood and 
psychological status of patients diagnosed with winter depression. It has been noted since 
antiquity that some individuals are adversely affected by the changing seasons. More recently, 
the specific condition of fall and winter depression or Seasonal Affective Disorder (SAD), has 
been formally described in the scientific literature (Lewy et aI., 1982; Rosenthal et aI., 1984; 
Rosenthal et aI., 1988; Terman et aI., 1989a; Terman and Terman, 1992) and been included in 
the latest edition ofthe American Psychiatric Association's diagnostic manual (DSM-III-R, 
American Psychiatric Association, 1987). People affected with this malady often experience a 
dramatic decrease in their physical energy and stamina during the fall and winter months. As 
daylengths become shorter and temperatures become cooler, individuals with SAD often find it 
increasingly difficult to meet the demands oflife - they can not function well in their jobs or can 
not cope with everyday family life. In addition to a general decrease in energy, they experience 
emotional depression and feelings of hopelessness and despair. Other symptoms of winter 
depression or SAD may include increased sleepiness and need for sleep, increased appetite 
(particularly for sweets and other carbohydrates), and a general dysire to withdraw from society. 
People afflicted with this malady often feel compromised in meeting the ordinary demands and 
responsibilities of everyday life. Fortunately, among those who are accurately diagnosed with 
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SAD, daily light therapy has been found to effectively reduce symptoms in many patients (Lewy 
et al., 1982; Rosenthal et al., 1984; Rosenthal et aI., 1988; Tennan et aI., 1989a; Tennan and 
Tennan, 1992). 

There are now numerous clinics across the United States that offer light therapy for people who 
are afflicted with winter depression (Rosenthal, 1990; Society for Light Treatment and 
Biological Rhythms, 1991a). Specific treatment protocols vary somewhat between different 
clinics. One frequently used procedure involves a patient sitting at a specific distance from a 
fluorescent light panel which provides a 2500 lux exposure when looking directly at the lamp. 
The patient is told not to gaze steadily at the bright light, but rather to glance directly at the unit 
for a few seconds each minute over a two hour period. During the therapy period, a patient may 
read, watch television, work at a computer or do other hand work. Patients often respond to this 
therapy after two to seven days of light treatment and continue to benefit as long as the treatment 
is repeated daily throughout the months that the individual experiences winter depression 
(Rosenthal et aI., 1984; Rosenthal et aI., 1988; Tennan et aI., 1989a; Tennan and Tennan, 1992). 

The white light used for treating SAD can be effectively provided by a range of lamp types 
including incandescent, cool-white fluorescent, and "sunlight simulating" fluorescent, (Lewy et 
aI., 1982; Rosenthal et aI., 1984; Rosenthal et aI., 1988; Tennan et aI., 1989a; Tennan and 
Tennan, 1992; Yerevanian et aI., 1986; Lewy et al., 1987; Tennan et aI., 1990; Stewart et aI., 
1990; Moul et aI., 1993; Joffe et al., 1993; Tennan et aI, 1989b; Avery et aI., 1993). 
Furthennore, there is an assortment of light devices available for treating SAD. Light therapy 
instruments come in a variety of shapes and configurations including workstations (T ennan et 
aI., 1990), head-mounted light visors (Stewart et aI., 1990; Moul et aI., 1993; Joffe et aI., 1993) 
and automatic dawn simulators (Tennan et aI, 1989b; Avery et al., 1993). These devices are 
configured to shorten therapeutic time, increase patient mobility or to pennit therapy during the 
sleep period. Doubtless there will be continued development, diversification and improvement 
of light therapy devices and strategies. 

THE EFFECTS OF DIFFERENT WAVELENGTHS IN SAD PHOTOTHERAPY 

Current evidence supports the hypothesis that light therapy for SAD works by way of light 
shining into the eyes as opposed to light on the skin (Wehr et aI., 1987). It is not known, 
however, what ocular photo receptors or photopigments mediate the therapeutic benefits of light 
in winter depression. To date, three consecutive studies have specifically compared different 
portions of the spectrum for clinical efficacy in treating SAD (Brainard et al., 1990; Oren et aI., 
1991; Stewart et aI., 1991). In the first study, 18 patients were treated with an equal photon 
dose of white, blue or red light for a period of one week. The ph0ton dose of 2.3 x lOIS 
photons/cm2/sec was selected because this particular photon density of broad spectrum white 
light (400-760 nm half-peak bandwidth, Vitalite® lamps, Durotest Corp.) had been shown in 
many previous studies to be clinically effective in one week of therapy (Rosenthal et al., 1988; 
Tennan et aI., 1989a). The red and blue light sources used in this study (F40R and F40BB 
lamps, Westinghouse Div., Philips Inc.) had half-peak bandwidths of approximately 615-685 nm 
and 430-465 nm, respectively. Patients' clinical status before and after light therapy was 
followed by means of the 21-item Hamilton Depression Rating Scale (HDRS), a standard scale 
for measuring symptoms associated with depression (Hamilton, 1967). The results of this study 
are illustrated in Figure 2. 
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Fig. 2. The bars in this graph indicate mean + SEM Hamilton Depression Rating Scale 
values for patients before treatment (hatched bars) and after one week of treatment with 
equal photon densities of different light spectra (open bars). Numbers in parentheses 
indicate the half-peak bandwidth of the light source (Brainard et aI., 1990). 

This study was the first step towards defining an action spectrum oflight therapy for winter 
depression. As shown in Figure 2, one week of light therapy with each of the three light sources 
produced an improvement in depression symptoms among the groups of patients tested. 
Specifically, the percent drop in mean HDRS scores were 26%, 47% and 27% for the red, white 
and blue light sources, respectively. Thus, the photon density emitted from the white light 
source elicited a significantly stronger clinical response compared to the results obtained from an 
equal photon density from the blue and red light sources (Brainard et aI., 1990). This suggests 
that broad spectrum white light at this particular photon density is superior to restricted 
bandwidths oflight in the red and blue portions of the visible spectrum. That result implies that 
light sources for SAD light therapy could not be improved by narrowing the wavelengths 
provided and shifting them towards either end of the visible spectrum. It is logical, however, to 
question the relative efficacy of a green bandwidth of light for treating winter depression. 

To resolve that question, a second study was done comparing green light to red light at 2.3 x lOIS 
photons/cml/sec for treating SAD (Oren et al., 1991). The green and red light (F40G and F40R 
lamps, Westinghouse Div., Philips Inc.) had half-peak bandwidths of approximately 505-555 nm 
and 615-685 nm, respectively. Patients' clinical status before and after one week of light therapy 
was followed by means of the 21-item HDRS. The results of this study are illustrated in Figure 3. 
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Fig. 3. The bars in this graph indicate mean + SEM HDRS values for patients before treatment 
(hatched bars) and after one week of treatment with equal photon densities of green or red light. 
Numbers in parentheses indicate the half-peak bandwidth of the light source (Oren et aI., 1991). 

As illustrated in Figure 3, one week of light therapy with both green and red light sources 
produced an improvement in depression symptoms in the groups of patients tested. The percent 
reduction in mean HDRS scores was 51 % and 30% for the green ·and red light sources, 
respectively. Hence, at this photon density, green light was significantly stronger than the red 
light for treating winter depression (Oren et al., 1991). The results of this study (Figure 3) 
considered alongside the results from the study comparing red, white and blue light therapy at 
the same photon density (Figure 2) suggest that broad spectrum white light and narrower band 
green light are equivalent in their capacity to reduce symptoms of SAD. Between the two 
studies, white and green light treatments were associated with a 48% and 53% reduction in 
HDRS scores, respectively. Comparisons of group responses between different studies, 
however, are not conclusive. Are white and green light really equivalent in their 
photo therapeutic strength? 

To answer that question, 12 patients were given one week of light therapy for SAD with either 
green or white light at an equal photon density (Stewart et aI., 1991). Since therapy with white 
and green light appeared to cause roughly equivalent HDRS reductions across the first two 
studies, the experimental photon density was lowered to 1.23 x lOIS photons/cm2/sec in the third 
study. As in the first two studies, patients' clinical status before and after one week of light 
therapy was followed by means of the 21-item HDRS. The results of this study are illustrated in 
Figure 4. 

168 



30 

en 
a: 20 
C 
:r: 
:: 
w 
t: 
... 10 

'" 

SAD PATIENTS (N=12) TREATED WITH 
1.23 X 10 1 5 photons/em 2 /see 

~ Pretreatment 

o One Week Treatment 

o~~~~a---~----~~~~ __ ~ ___ 
GREEN WHITE 

(505-555 nm) (400-760 nm) 

Fig. 4. The bars in this graph indicate HDRS values (mean + SE:tv1) for patients before treatment 
(hatched bars) and after one week of treatment with equal photon densities of white or green 
light. Numbers in parentheses indicate the half-peak bandwidth of the light source (Stewart et 
aI., 1991). 

As shown in Figure 4, one week of therapy with each of the light sources produced an 
improvement in depression symptoms. Specifically, the percent drop in mean HDRS scores was 
22% for the green light and 46% for the white light sources. At this lower photon density, white 
light was superior to the green light in treating SAD (Stewart et aI., 1991). Hence, in this study, 
white and green light were not equivalent in their therapeutic efficacy as the preliminary 
comparison of the data from the first two wavelength studies suggested. 

Together, these three studies form the ground work for determining the action spectrum for 
SAD light therapy (Brainard et aI., 1990; Oren et aI., 1991; Stewart et al., 1991). The traditional 
approach to defining a complete action spectrum, however, requires substantially more testing 
(Coohill, 1991). A thoroughly defined action spectrum can guide the development of light 
treatment devices that emit the optimum balance of wavelengths for treating SAD. Furthermore, 
an action spectrum will yield important information about the photosensory mechanism(s) 
responsible for the beneficial effects of light therapy. Currently, it is premature to predict what 
photopigment(s) or photoreceptor(s) mediate the antidepressant effects of light. 

A practical issue debated among SAD researchers concerns the role of ultraviolet radiation (UV) 
in light therapy. Most of the early studies on SAD therapy successfully utilized fluorescent 
lamps that emitted white light containing a portion ofUV wavelengths (Rosenthal et aI., 1988; 
Terman et aI., 1989a). Those early results erroneously led to the suggestion that UV 
wavelengths are necessary for successful therapy. The literature, however, shows clearly that 
SAD symptoms can be reduced by lamps which emit little or no UV (Yerevanian et aI., 1986; 
Lewy et aI., 1987; Stewart et aI., 1990; Moul et aI., 1993; Joffe et aI., 1993; Brainard et aI., 1990; 

169 



Oren et aI., 1991; Stewart et aI., 1991; Lam, 1991). Hence, UV wavelengths do not appear to be 
necessary for eliciting positive therapeutic results. Does this rule out UV having any role in 
relieving winter depression? Studies demonstrate that UV wavelengths can regulate seasonal 
reproduction, melatonin production, and circadian rhythms in some animal species (Brainard et 
aI., 1985; Vaughan et al., 1985; Podolin et aI., 1987; Benshoff et aI., 1987; Brainard et aI., 1987; 
Brainard et aI., 1991 a). Furthermore, in normal, healthy humans up to the age of at least 25 
years, UV -A can be detected by the visual system (Tan, 1971; Brainard et aI., 1992; Sanford et 
aI., 1992). Although the latest studies show no decrement in therapeutic response when UV is 
specifically excluded in SAD treatment, they do not demonstrate that UV is totally 
noncontributory. Whether or not UV wavelengths can contribute to the optimum balance of 
wavelengths for SAD therapy remains an open question. 

The data presented here make it clear that several methodological problems will have to be 
overcome before further progress can be made in defining an action spectrum for SAD light 
therapy. One complication for the wavelength studies and nearly all studies on SAD involves 
the fact that they are done on an outpatient basis. Hence, patient compliance on treatment 
timing, frequency and duration cannot be closely controlled even with the most cooperative 
SUbjects. Furthermore, very small changes in gaze direction and patient position relative to the 
light source can cause great variability in the amount of light transmitted to the patients' eyes 
(Gaddy, 1990; Dawson and Campbell, 1990). Did patients have different gaze behaviors or 
different patterns of light usage with the different wavelength light sources? The optimum 
method of comparing different wavelengths - or any other photic parameter - for SAD therapy is 
to work with more carefully controlled exposures. As demonstrated in the melatonin 
suppression studies, tight control of ocular light exposure permits substantially lower light levels 
to regulating hormone secretion. Could the general requirement of2500 lux or more for SAD 
therapy be a compensation for differences in patient compliance and exposure variables? 

Across the three wavelength studies outlined above, each light treatment produced some 
therapeutic improvements. Does this indicate that each light was at least partially effective in 
treating SAD symptoms, or are some of the therapeutic benefits of light therapy due to a non
specific or placebo response? Since patient expectations of treatment outcome are thought to 
contribute significantly to the placebo effect, evaluation of expectations before treatment is one 
strategy for approaching this question. Prior to any light treatment, subject expectations were 
systematically probed in each of the three wavelength studies. In general, all subjects had 
positive expectations about the success of light therapy but there were no differences between 
the expectations for the different light spectra in these studies (Brainard et aI., 1990; Oren et aI., 
1991; Stewart et aI., 1991). This evidence supports the idea that some of the therapeutic benefit 
of the different light spectra may have been due to a placebo response but that the differential 
therapeutic responses to the different light spectra were not merely an extension of the patients' 
preconceived beliefs. 

In the medical literature it has been well documented that patients with a wide range of disorders 
- depression, schizophrenia and anxiety as well as cancer, diabetes and ulcers - can successfully 
respond to inactive or placebo treatments (Ross and Olson, 1981; Eastman, 1990a; Eastman et 
aI., 1993). Hence it would be remarkable if SAD patients did not show some level of placebo 
response to light therapy. In fact, therapeutic improvements are almost always observed with 
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light treatments regardless of light intensity, wavelength and duration (Rosenthal et aI., 1988; 
Terman et aI., 1989a; Terman and Terman, 1992). Although it is obvious that light therapy 
indeed will reduce patients' depression symptoms, the critical question is how much of the 
patients' response to light therapy is due to a non-specific placebo response versus a genuine 
clinical response? This remains an open question in the SAD field and has been discussed most 
insightfully by Eastman (1990a). Unfortunately, until this question is resolved, a more 
conclusive action spectrum for SAD phototherapy may not be possible. The inability to 
accurately separate placebo responses from genuine clinical antidepressant responses causes an 
element of "noise" in phototherapy data which seriously hinders the accurate discrimination of 
differential wavelength effects in light therapy. 

USE OF LIGHT FOR ENHANCING PERFORMANCE AND TREATING PROBLEMS 
OF NIGHT WORKERS 

Over the past decade, most of the studies on light therapy have been concerned with winter 
depression. Other research, however, has begun to extend the applications oflight therapy. 
Investigators have had some success in treating certain sleep disorders with phototherapy 
(Rosenthal et aI., 1990; Dawson et aI., 1989). In addition, studies have indicated that individuals 
with either non-seasonal depression (Yerevanian et aI., 1986; Kripke et aI., 1989) or pre
menstrual syndrome (PMS) may benefit from light therapy (Parry et aI., 1987; Parry et aI., 
1989). Much more work needs to be done in determining the utility of light for treating these 
disorders. It appears that we are entering a frontier of medicine in which man's biological 
response to light is being harnessed to alleviate specific illnesses. Such medical developments 
have encouraged investigators to explore the possibilities of using light for various domestic or 
non-medical applications. 

One area of study involves the function and dysfunction of the human circadian physiology 
under more challenging situations. Some preliminary studies have tested the use of strategic 
light exposure to prevent or ameliorate jet lag (Daan and Lewy, 1984; Wever, 1985; Cole and 
Kripke, 1989). The preliminary findings are generally positive and some investigators are 
optimistic that light will be a useful tool for quickly resetting the traveler's internal biological 
clock and overcoming some of the problems associated with jet travel over multiple time zones. 
There is a consensus among scientists however, that the data in this field - as of August, 1991 -
are preliminary and insufficient for a specific prescription on how to best use light for this 
modem malady (Society for Light Treatment and Biological Rhythms, 1991 b). 

Shift work may pose problems associated with circadian desynchronization analogous to that 
found in jet lag (Moore-Ede et aI., 1982; U. S. Congress, 1991). Instead of rapidly flying to 
distant countries, the shift worker stays in one place but may just as suddenly change the time 
period that he is awake or asleep. By the broadest definition, shift workers are individuals who 
do not work a standard daytime schedule. Instead, they work nights, evenings, rotating shifts, 
split shifts or extended shifts. It is estimated that one out of five full time workers in the United 
States (20 million people) is a shift worker (U. S. Congress, 1991). 

As Campbell and Dawson (1992) have reported, the two most coinmon and destructive problems 
associated with shiftwork are reduced quality of sleep following night work and reduced 
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capacity to maintain alertness while at work. Thus, shift work has drawbacks in increased 
accidents, decreased production and performance deficits among those who are working at night 
when the body has a natural tendency to be asleep. Furthermore, evidence indicates that shift 
workers have increased health problems including higher risk to cardiovascular disease, 
gastrointestinal distress, as well as cognitive and emotional problems (Moore-Ede et aI., 1982; 
U. S. Congress, 1991; Campbell and Dawson, 1992; Folkard and Monk, 1985; Eastman, 1990b; 
Moore-Ede et aI., 1983; Akerstedt et aI., 1984). Despite these deleterious effects on worker 
health and efficiency, the number of people involved in shift work is likely to increase. 
Researchers believe that poor chronobiological adjustment to a permanent or rotating schedule 
causes some of these ailments (U. S. Congress, 1991). Not all of these problems, however, are 
solely due to a maladapted biological clock. In addition to a de synchronized circadian system, 
shift workers generally tend to be chronically sleep deprived and experience domestic stresses 
that are more or less independent of circadian adaptation (Moore-Ede et aI., 1982; U. S. 
Congress, 1991; Folkard and Monk, 1985) Hence, there is no single solution to all of the 
problems associated with shift work. 

On the frontiers of shift work research, some investigators are attempting to develop strategies of 
light stimulation to improve circadian entrainment and to enhance performance and alertness in 
night workers. In one study, Czeisler and colleagues simulated a.night shift routine in the 
laboratory and tested both biological adaptation and behavioral performance under different 
lighting stimuli (Czeisler et aI., 1990). They found that workers given 7,000 to 12,000 lux of 
white fluorescent light during their work hours and complete darkness to sleep in during the 
daylight hours, adapted better biologically and had improved alertness and cognitive 
performance compared to subjects who worked under 150 lux oflight and had no complete 
darkout for sleeping during the day (Czeisler et aI., 1990). Other studies on simulated shift work 
have shown that exposure to bright white fluorescent light at specific times can improve sleep 
quality, enhance performance and speed the adjustment of the circadian system (Society for 
Light Treatment and Biological Rhythms, 1991b; Campbell and Dawson, 1992; Eastman, 
1990b). All of these studies were aimed primarily at finding a means of improving adjustment of 
the circadian system, sleep quality and performance of the shift worker. This experimental 
approach requires a minimum of 3 to 5 testing days and, under optimum conditions, even longer 
test periods to adequately discern circadian and sleep changes. 

A different experimental approach has been to exanline the immediate effects of light stimuli in a 
single night of work or during prolonged periods of work. The principal focus of this research 
has been to determine if bright light stimuli can help sustain alertness without degrading 
performance. In a study by French and colleagues (1990), healthy young volunteers stayed 
awake and worked continuously at a computer for 30 hours, taking only short breaks to eat or go 
to the bathroom. While working under 3,000 lux of white fluorescent light during 18:00 to 06:00 
hours, the volunteers exhibited significantly improved behavioral and cognitive performance on 
selected tasks compared to their own performance on a separate occasion under 100 lux. In 
addition to these behavioral effects, there were significant differences in the body temperatures, 
plasma cortisol levels and plasma melatonin levels in these volunteers under the bright versus 
dim light condition (French et aI., 1990; Brainard et aI., 1991 b). A similar study done in a 
separate laboratory has also shown that young men doing night work from 21:00 to 08:00 hours 
under 5000 lux of white light performed better on selected behavioral tasks versus when they 
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worked under light at 50 lux (Hannon et aI., 1991). Again, in this study body temperatures and 
melatonin levels were significantly influenced by light levels. In these acute studies, it is not 
clear how light is influencing performance. Could the correlated biological changes in body 
temperature and hormone levels be directly related to improvement in behavioral tests? Is the 
circadian system involved in these acute effects of light? Are the acute effects of light due to a 
"masking" of circadian rhythms? Clearly, further studies are needed to clarify the mechanism(s) 
by which light enhances performance. 

There are many occasions when individuals work through the night on an irregular basis, either 
by free choice, or by unexpected needs emerging in the home or at work. What are the longer 
term consequences of a single night of bright light exposure for improving alertness and 
performance? Will the short term gains of enhanced performance or alertness be offset by a 
longer term disruption of circadian physiology when the individual returns to a regular schedule? 
This new research raises many unanswered questions. As with jet lag applications, there is a 
consensus among scientists - as of September, 1991 - that it is still premature to formulate a set 
prescription on how to best use light for both short term and long term work applications 
(Society for Light Treatment and Biological Rhythms, 1991b; U. S. Congress, 1991). Much 
additional work is needed in both laboratory simulations and field tests before the overall 
consequences of using bright light stimuli can be determined and the optimum lighting strategy 
can be recommended for the varieties of shift work. 

As with research on phototherapy for SAD and other disorders, it should be noted that the 
studies on using light stimuli to improve problems associated with night work may have 
complications of placebo responses. Simply put, most volunteers can readily see that a 
manipulation of light is part of the experiment. In such a circumstance, the investigator runs the 
distinct risk of finding a placebo reaction to the specific light treatments. There are good 
experimental strategies which can help address the potential problem of a placebo response and 
some of them are discussed above. One of the best means to avoid placebo problems in lighting 
studies is to collect both behavioral and biological data. Whereas behavioral variables and 
subjective mood states may be quite susceptible to the volunteers' mental preconceptions, 
objective biological variables such as circadian rhythms, hormon~ levels, electrophysiological 
responses, body temperature, urine volume and the like are much less likely to be directly 
influenced by a placebo response. Collecting physiological and behavioral measures together 
can greatly improve the reliability of data on nonvisual biological effects of light of light. 

CONCLUSION 

Experimental research on animals during the past thirty years and on humans in the past decade 
confirm that light can strongly influence the physiology and behavior of many species. With 
humans, light is a primary stimulus to the circadian system and can regulate many biochemical 
and physiological processes in the body. The critical parameters oflight intensity and 
wavelength needed to provide this nonvisual biological stimulation are still under study. In 
addition to these biological effects of light, a high percentage of patients who suffer from winter 
depression are responsive to bright light therapy. Other clinical disorders also may be treatable 
with light stimuli. Further pioneering studies are now examining the use oflight to improve 
performance and ameliorate problems associated with shift work. Taken together, these studies 
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provide the initial database for a frontier in medicine and biology. Beyond therapeutic 
applications, however, what are the potential consequences of this research? 

Modem man has become very sophisticated in the specific use of light in his living and working 
environment. Currently, building interiors are illuminated for three main purposes: 1) providing 
light for visual performance; 2) providing light for visual comfort; and 3) providing light for 
aesthetic appreciation of the environment and its contents (Kaufman, 1984; Kaufman, 1987). 
The studies discussed here demonstrate that light can also influence human physiology, mood 
and behavior. These data may be the seeds for a revolution in architectural lighting. It is 
appropriate to begin exploring ways to incorporate these laboratory results into practical 
architectural lighting designs. Such designs will need to optimize architectural light for 
nonvisual biological stimulation as well as follow the traditional guidelines for providing correct 
visual stimulation and comfort. In the long range, this new design consideration is likely to 
dramatically alter illumination strategies for homes, factories, offices, schools, hospitals and 
most interior living spaces. 
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OCULAR HAZARDS OF LIGHT 

David H. Sliney, Ph.D. 

Laser Microwave Division, US Army Environmental Hygiene Agency, Aberdeen Proving 
Ground, MD 21010-5422 

BACKGROUND 

The eye is protected against bright light by the natural aversion response to viewing bright light 
sources. The aversion response normally protects the sun against injury from viewing bright light 
sources such as the sun, arc lamps and welding arcs, since this aversion limits the duration of 
exposure to a fraction of a second (about 0.25 s). 

There are at least five separate types of hazards to the eye and skin from optical sources: l 

(a) Ultraviolet photochemical injury to the skin (erythema and carcinogenic effects), and 
to the cornea (photokeratitis) and lens (cataract) of the eye (180 nm to 400 nm). 

(b) Thermal injury to the retina of the eye (400 nm to 1400 nm). 

(c) Blue-light photochemical injury to the retina of the eye (principally 400 nm to 550 nm; 
unless aphakic, 310 to 550 nm)2 

(d) Near-infrared thermal hazards to the lens (approximately 800 nm to 3000 nm). 

(e) Thermal injury (burns) of the skin (approximately 400 run to I mm) and of the cornea 
of the eye (approximately 1400 nm to 1 mm). 

The principal retinal hazard resulting from viewing bright light sources is photoretinitis, e.g., 
solar retinitis with an accompanying scotoma which results from staring at the sun. Solar retinitis 
was once referred to as "eclipse blindness" and associated "retinal burn." Only in recent years 
has it become clear that photo retinitis results from a photochemical injury mechanism following 
exposure of the retina to shorter wavelengths in the visible spectrum, i.e., violet and blue light. 
Prior to conclusive animal experiments at that time (Ham, Mueller and Sliney, 1976), it was 
thought to be a thermal injury mechanism. However, it has been shown conclusively that an 
intense exposure to short-wavelength light (hereafter referred to as "blue light") can cause retinal 
injury. 

The product of the dose-rate and the exposure duration always must result in the same exposure 
dose (injoules-per-square centimeter at the retina) to produce a threshold injury. Blue-light retinal 
injury (photoretinitis) can result from viewing either an extremely bright light for a short time, 
or a less bright light for longer exposure periods. This characteristic of photochemical injury 
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mechanisms is tenned reciprocity and helps to distinguish these effects from thennal burns, where 
heat conduction requires a very intense exposure within seconds to cause a retinal coagulation; 
otherwise, surrounding tissue conducts the heat away from the retinal image. Injury thresholds 
for acute injury in experimental animals for both corneal and retinal effects have been corrobo
rated for the human eye from accident data. Occupational safety limits for exposure to UVR and 
bright light are based upon this knowledge. As with any photochemical injury mechanism, one 
must consider the action spectrum, which describes the relative effectiveness of different 
wavelengths in causing a photobiological effect. The action spectrum for photochemical retinal 
injury peaks at approximately 440 nm. 

CALCULATING RETINAL EXPOSURE 

From knowledge of the optical parameters of the human eye and from radiometric parameters of 
a light source, it is possible to calculate irradiances (dose rates) at the retina. Exposure of the 
anterior structures of the human eye to ultraviolet radiation (UVR) may also be of interest; and 
the relative position of the light source and the degree of lid closure can greatly affect the proper 
calculation of this ultraviolet exposure dose. For ultraviolet and short-wavelength light exposures, 
the spectral distribution of the light source can also be important. 

Quantities and units 

Two sets of light-measurement quantities and units are useful in defining light exposure of the 
retina: radiometric and photometric. Radiometric quantities such as radiance--used to describe 
the "brightness" of a source [in W/cm2·sr] and irradiance--used to describe the irradiance level on 
a surface [in W/cm2

] are particularly useful for hazard analysis. Radiance and luminance are 
particularly valuable because these quantities describe the source and do not vary with distance. 
Photometric quantities such as luminance (brightness in cd/cm2 as perceived by a human "standard 
observer") and illuminance in lux (the "light" falling on a surface) indicate light levels spectrally 
weighted by the standard photometric visibility curve which peaks at 550 nm for the human eye 
(Figure 1). To quantify a photochemical effect it is not sufficient to specify the number of 
photons-per-square-centimeter (photon flux) or the irradiance (W /cm2) since the efficiency of the 
effect will be highly dependent on wavelength. Generally, shorter-wavelength, higher-energy 
photons are more efficient. 

Photometric quantities are hybrid quantities which are defined by an action spectrum for vision--a 
photochemically initiated process. Photometric quantities may not have much value in describing 
retinal effects other than vision or in research relating to neuroendocrine effects mediated by the 
visual system. Unfortunately, since the spectral distributions of different light sources vary 
widely, there is no simple conversion factor between photometric (either photopic or scotopic) and 
radiometric quantities. This conversion may vary from 15 to 50 lumens/watt (lm1W) for an 
incandescent source to about 100 1m1W for the sun or a xenon arc, to perhaps 300 to 400 ImlW 
for a fluorescent source (Sliney and W olbarsht, 1980).1 
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HUMAN EXPOSURE LIMITS 

A number of national and international groups have recommended occupational or public exposure 
limits (ELs) for optical radiation [i.e., ultraviolet (UV), light and infrared (lR) radiant energy] . 
Although most such groups have recommended ELs for UV and laser radiation, only one group 
has recommended ELs for visible radiation (Le., light). This one group is well known in the field 
of occupational health--the American Conference of Governmental Hygienists (ACGIH). The 
ACGrn refers to its ELs as "Threshold Limit Values," or TLVs and these are issued yearly, so 
there is an opportunity for a yearly revision3-4. The current ACGrn TLV's for light (400 nm to 
760 nm) have been largely unchanged for the last decade, although they have been on a tentative 
list for much of that time. They are based in large part on ocular injury data from animal studies 
and from data from human retinal injuries resulting from viewing the sun and welding arcs. The 
TL V s also have an underlying assumption that outdoor environmental exposures to visible radiant 
energy is nonnally not hazardous to the eye except in very unusual environments such as snow 
fields and deserts. 

On the international scene there are currently no limits for optical radiation except for the special 
case of laser radiation. The International Non-ionizing Radiation Committee (lNIRC) of the 
International Radiation Protection Association (IRP A) published Guidelines on Limits of Exposure 
to Laser Radiation in 19855 and revised them in 1988. INIRC guidelines are developed through 
collaboration with the World Health Organization (WHO) by jointly publishing criteria documents 
which provide the scientific data base for the exposure limits6

• 

THE ACGIH THRESHOLD LIMIT VALUES 

Ultraviolet Radiation 

The ACGIH TL V3 and the INIRC EL for exposure to the eye and skin to UVR is 3 mJ/cm2
-

effective, when the spectral irradiance E1 at the eye or skin surface is mathematically weighted 
against the hazard sensitivity spectrum Sl from 180 nm to 400 nm as follows: 

[1] 

In addition to the above requirement, the ocular exposure is also limited to 1 J/cm2 for periods up 
to 1000 s (16.7 min) and to 1 mW/cm2 for greater periods. For this requirement, the total 
irradiance, E-uva, in the UV-A spectral region is summed from 315 nm to 400 nm: 

E-uva = L E1 · !l. l [2] 

where E1 is the spectral irradiance in W/(cm2-nm). 

The pennissible exposure duration, tmax , in seconds, to UVR is calculated by: 

[3] 

185 



and if the UV-A irradiance exceeds the 8-hour criterion of 1 mW/cm2, the maximum exposure 
must also be less than: 

[4] 

Retinal Thermal Hazards 

The ACGrn TL V derived to protect the human retina from thermal injury requires the use of 
another spectral weighting function, R.\,. 18 The TLV for the hazardous radiance is termed LHAZ, 
which is a function of the angular subtense ex of the source (which is the light-source dimension 
DL divided by the viewing distance r to give the angle in radians) and the exposure duration t (in 
seconds): 

LHAZ = 5/ex·t3/4 [in W/(cm2-sr] [5] 

The spectral radiance L.\, of the source is weighted against the retinal hazard function R.\, and the 
resulting effective radiance must not exceed LHAZ: 

(for t < 10 s) [6] 

For small sources such as an optical fiber source, the closest distance at which the human eye can 
sharply focus upon a small object is about 10 cm. The value of 10 cm is an exceptionally small 
value for the near-point of accommodation for the human eye. At shorter distances the image of 
a light source would be out of focus and blurred. 

Blue-Li2ht Photochemical Retinal Hazard 

The ACGIH TLV3 to protect the human retina against photoretinitis,1"the blue-light hazard" is 
an effective blue-light radiance Ls of 100 J/(cm2·sr), for t < 10,000 s, i.e., 

[7] 

and for t > 10,000 s (2.8 hrs.): 

[8] 

To calculate the maximum direct viewing duration when [8] is not satisfied, this maximum "stare 
time," t-max, is found by inverting Eqn. [7]: 

t-max = 100 J/(cm2·sr) / LB [9] 

For very small sources that subtend a viewing angle less than exMIN, which is 11 mrad = 0.011 
rad. The blue light hazard is evaluated by mathematically weighting the spectral irradiance, E.\" 
against the blue-light hazard function to obtain EB to give: 
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EB = 1:: E). . B). . I!..}.. :s: 10 mJ/cm2 for t :s: 10,000 s [10] 

and for t > 10,000 s (2.8 hrs.): 

[11] 

To calculate the maximum direct viewing duration when [11] is not satisfied, this maximum "stare 
time," t-max, is found by inverting Eqn. [10]: 

t-max = 10 mJ/(cm2·sr) I EB [12] 

Retinal Photochemical Hazard to the Aphakic Eye. 

The third type of retinal hazard--the aphakic photochemical retinal hazard--is evaluated by 
spectrally weighting the radiance against the aphakic retinal hazard function A).. 18 This 
photochemical retinal injury hazard is merely an extension of the blue-light hazard and must be 
analyzed only for individuals with at least one aphakic eye (Le., an eye with the normal lens 
removed, as in cataract surgery). The approach is to substitute A). for B). in Eqns. [7] through 
[12]. For example, the aphakic hazard radiance L-aphake is: 

L-aphake = E-aphakel Q [13] 

LA = 1: L). . A).·I!..}.. :s: 100 J/(cm2·sr) effective for t :s: 10,000 s (2.8 hrs.). [14] 

Infrared Radiation Hazards to the Eye 

Any calculation of potential retinal thermal hazards to the eye normally includes a consideration 
of the contributions ofIR-A (700-1400 nm) and IR-B (1.4 /-tm-3.O /-tm). In contrast to blue light, 
IR-A is very ineffective in producing retinal injuries (Ham, et aI., 1982, 1976).1.3 The data which 
could be used as the basis of an exposure limit for chronic exposure of the anterior of the eye to 
infrared radiation are very limited. Sliney and Freasier (1973) stated that the average corneal 
exposure from infrared radiation in sunlight was of the order of 1 mW/cm2 •8 Glass and steel 
workers exposed to infrared irradiances of the order of 80-400 mW/cm2 daily for 10-15 years have 
reportedly developed lenticular opacities.8 

The ACOIH guideline for IR-A exposure of the anterior of the eye is a time-weighted total 
irradiance of 10 mW/cm2 for exposure durations exceeding 1,000 s (16.7 minutes). Pitts, et al. 
(1979) showed that the threshold radiant exposures to cause lenticular changes from IR-A were 
of the order of 5000 J/cm2•7 Threshold damage irradiances were at least 4 W/cm2• There is also 
a second ACGIH criteria to protect the retina against thermal injury from viewing specialized 
infrared illuminators which have visible light filtered out so that the aversion response stimulus 
is not present.! 
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RADIOMETRIC MEASUREMENTS REQUIRED 

To evaluate the potential optical radiation hazard to the eye, the ultraviolet spectral irradiance at 
from 200 - 400 nm would be determined at the nearest location of the eye. Spectral irradiance 
and radiance of the light emitted from the source in the 400 - 770 nm range (and sometimes to 
1,400 nm) may also be required to analyze potential retinal hazards to an observer. Spectral 
irradiance at longer wavelengths could also be measured, although a measurement of total 
irradiance in this region is sufficient. The spectral radiance can be determined by measuring the 
spectral irradiance at a fixed distance (e.g., 30 cm) and dividing by the solid angle a subtended 
by the source. 

La = Ba/a [15] 

The spectral radiance is then independent of viewing distance because of the law of conservation 
of radiance. 

Whenever spectroradiometric measurements are made for the purpose of a safety study, it is 
imperative that errors are not introduced. For this reason, it is useful to check measured 
spectroradiometric values with check-measurements made with illuminance and spot-luminance 
measurements. This is cone by also calculating the illuminance Ey or luminance Ly from the 
spectral irradiance measurements, e.g., 

[16] 

The luminance Ly is then the illuminance divided by the angular subtense of the source a: 

[17] 

where the luminance would be expressed in cd/cm2 if the illuminance was expressed in Imlcm2 • 
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THE ENERGY POLICY ACT OF 1992 

Charles F. Baxter 

United States Department of Energy, Chicago Support Office 
9800 S. Cass Avenue, Argonne, IL 60439 

As a consequence of the National Energy Strategy, which was conceived by the Bush 
Administration, Congress enacted and the President signed into law, the Energy Policy Act of 
1992 on October 24~ 1992, (EP ACT 1992). 

Of the thirty-three titles ofEPACT, Title I - Energy Efficiency, is the longest and most 
comprehensive section. In concert with the goals of the International Lighting in Controlled 
Environments Workshop, this Section 103, Energy Efficient Lighting and Building Centers of 
EPACT, provides an opportunity for the nation to design, test and implement the most advanced, 
efficient lighting systems. 

The purpose of Section 103 is to encourage energy efficiency in buildings through the 
establishment of regional centers to promote energy efficient lighting, heating and cooling, and 
building design. 

EP ACT provides for grants to nonprofit institutions, or to consortiums that may include 
nonprofit institutions, State and local governments, universities, and utilities, to establish or 
enhance one regional building energy efficiency center in each of the 10 regions served by a 
Department of Energy regional support office. 

Each regional center established is permitted to accomplish the following: 

Provide information, training, and technical assistance to building professionals such as 
architects, designers, engineers, contractors, and building code officials, on building energy 
efficiency methods and technologies, including lighting, heating and cooling, and passive 
solar; 

Operate an outreach program to inform such building professionals of the benefits and 
opportunities of energy efficiency and the services of the center; 

Provide displays demonstrating building energy efficiency methods and technologies, such as 
lighting, windows, and heating and cooling equipment; 

Coordinate its activities and programs with other institutions within the region, such as State 
and local governments, utilities, and educational institutions in order to support their efforts 
to promote building energy efficiency; 
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Serve as a clearinghouse to ensure that infonnation about new building energy efficiency 
technologies, including case studies of successful applications, is disseminated to end-users 
in the region; 

Study the building energy needs of the region and make available region-specific energy 
efficiency infonnation to facilitate the adoption of cost-effective energy efficiency 
improvements; 

Assist educational institutions in establishing building energy efficiency engineering and 
technical programs and curricula; 

Evaluate the perfonnance of the center in promoting building energy efficiency; 

Any nonprofit institution or consortium interested in receiving a grant under this section shall 
submit to the Secretary an application in such fonn and containing such infonnation as the 
Secretary may require. A lighting or building energy center in existence on the date of enactment 
of this section which is owned and operated by a nonprofit institution or consortium as described 
in the subsection above shall be eligible for a grant under this section. 

SELECTION CRITERIA: The Secretary shall select recipients of grants under this section on the 
basis of the following criteria: 

The capability of the grant recipient to establish a board of directors for the regional center 
composed of representatives from utilities, State and local governments, building trade and 
professional organizations, manufacturers, and nonprofit energy and environmental 
organizations. 

The demonstrated or potential resources available to the grant recipient for carrying out this 
subsection. 

The demonstrated or potential ability of the grant recipient to promote building energy 
efficiency by carrying out the activities specified in the pennitted activities. 

The activities which the grant recipient proposes to carry out under the grant. 

MATCHING FUNDS: The Federal share ofa grant under this section shall be no more than 50 
percent of the cost of establishing, and no more than 25 percent of the cost of operation of the 
regional center. 

No grant may be made under this section in any fiscal year unless the recipient of such grant 
enters into such agreements with the Secretary, as the Secretary may require, to ensure that such 
recipient will provide the necessary non-Federal contributions. Such non-Federal contributions 
may be provided by utilities, State and local governments, nonlocal governments, nonprofit 
institutions, foundations, corporations, and other non-Federal entities. 
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TASK FORCE - The Secretary shall establish a task force to: 

Advise the Secretary on activities to be carried out by grant recipients; Review and evaluate 
programs carried out by grant recipients; 

, 

Make recommendations regarding the building energy efficiency center grant programs. 
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LIGHTING APPLICATIONS 

LAMPS 
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SHORT REpORT 

SPECTRAL COMPARISONS OF SUNLIGHT AND DIFFERENT LAMPS 

Gerald Deitzer 

University of Maryland, College Park, Maryland 

The following tables were compiled to characterize the spectra of available lamp types and 
provide comparison to the spectra of sunlight. 

Table 1 reports the spectral distributions for various lamp sources and compares them to those 
measured for sunlight. All of the values are normalized to 100 Ilmol m·2s·1 of PAR (400-700 
nm) in order to simplify calculations. To use this table, simply establish the level of PAR that 
is desired, or measured, under various lamp sources and multiply by a multiple of 100. For 
example, if 300 Ilmol m·2s·1 of PAR are desired and you are using Cool-White fluorescent 
lamps, multiply any spectral range listed for Cool-White lamps by 3. Thus, if you are 
interested in the amount of ultraviolet light (350-400 nm) present in 300 Ilmol m·2s·1 of Cool
White fluorescent light, simply multiply 1.11 by 3 which gives a total of 3.33 Ilmol m·2s·1 of 
ultraviolet light. The amount of red light (600-700 nm) available under these conditions would 
be 3 x 22.56 = 67.681lmol m·2s·1, the amount of far-red light (700-750 nm) would be 1.40 x 3 
= 4.2 Ilmol m·2s·1, etc. Note that the wavelength ranges do not correspond exactly to the 
defined regions for UV-B (280-320 nm), UV-A (320-400 nm) and Far-red (700-800 nm). This 
was done arbitrarily to facilitate comparison of the active wavebands for different plant 
responses. The percentages relate the relative number of photons in various sources to 
sunlight. Thus, only Xenon has a solar spectral distribution in all of the visible wavelength 
regions, but it has about twice the relative amount of short wave UV-B. It also has much more 
infra-red radiation that does not appear in this table, which limits its usefulness. Other sources 
should be chosen for the relative importance of different wavelength regions since they all 
vary significantly from sunlight. 

Table 2 provides the amount of energy in Wm·2 relative to the number of photons of PAR 
(400-700 nm) for each light source. This calculation can be further simplified by simply 
multiplying the PAR value in Ilmol m·2s·1 by 0.2 to obtain the energy content of this region 
since none of the sources tested vary by more than 0.02 Wm·2 • In addition, Table 2 allows an 
accurate determination of the number of photons of PAR, even if a photometric instrument 
(lux or foot-candle meter) is used to measure this value. Simply multiply the number of lux or 
the number of foot-candles given in the table by the number of photons of PAR desired for 
each lamp source and set the corresponding photometric value accordingly. Thus, if 300 Ilmol 
m·2s·1 of Cool-White fluorescent light is desired multiply 79 lux or 7.3 foot-candles by 300 and 
set the meter to read 23,700 lux or 2,190 foot candles. For Vita-Lite fluorescent the same 
amount of PAR would be obtained by setting 18,900 lux or 1,770 ft-c; for metal halide 22,350 
lux or 2,070 ft-c, but low pressure sodium would require 31,800 lux or 2,955 ft-c. Note that 
only the wide spectrum Gro-Lux and Xenon are equivalent to sunlight for this calculation. 
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TABLE I. Spectroradiometer measured photons in various wave bands for sunlight and diftcrent lamp types nonnalized to I 00 ~Imol m-2 s-I 
of PAR (400-700 nm). Percenta es arc tile amounts of >hotons n.:lative to sunli ,ht. * 

Light Source Barrier ULTRA VIOLET BLUE GREEN RED FAR-RED 
250-350 350-400 400-500 500-600 600-700 700-750 

Sunlight None 2.88 6.21 29.16 35.20 35.64 17.00 

Incandescent 1/8 in. 0.00 0.47 7.52 28.49 63.98 47.00 
(100W) Plexiglas 0% 7% 26% 81% 180% 276% 

Cool White 1/8 in. 0.03 1.11 24.85 52.59 22.56 1.40 
Plexiglas 1% 18% 85% 149% 63% 8% 

Vita-Lite None 0.54 2.32 26.31 40.69 33.00 7.00 
19% 37% 90% 116% 93% 41% 

Gro-Lux None 0.16 3.72 29.36 20.22 50.42 1.01 
Original 6% 13% 101% 57% 141% 6% 

Gro-Lux 1/8 in. 0.00 0.83 19.78 32.52 47.70 10.00 
Wide Spectrum Plexiglas 0% 13% 68% 92% 134% 59% 

High Pressure None 0.17 0.53 6.52 56.57 36.91 4.00 
Sodium 6% 9% 22% 161% 104% 24% 

~ Low Pressure None 0.03 0.15 0.12 99.33 0.54 0.04 ()) 

Sodium 1% 2% 0% 282% 2% 0% 

Metal Halide None 0.66 6.71 20.38 55.52 24.10 4.00 
23% 108% 70% 158% 68% 24% 

Xenon None 5.81 7.66 26.88 34.17 38.94 19.00 
202% 123% 92% 97% 109% 112% 

Microwave 1/4 in. 0.00 0.68 23.99 45.00 31.00 10.00 
Plexiglas 0% 11% 82% 128% 87% 59% 

Cool White plus 1/8 in. 0.02 1.03 22.63 49.22 28.15 8.00 
Incandescent (IOOVV) Plexiglas 1% 17% 78% 140% 79% 47% 

In a 3: I ratio 

LED 660 None 0.00 0.00 0.00 0.06 99.94 0.31 
0% 0% 0% 0% 280% 2% 

LED 735 None (0.07) 0.00 (0.03) (0.03) 0.00 100.00** 
-2% 0% 0% 0% 0% 

I 

* Measurements by Gerald Deitzer. University of Mnrylnnd. 
** Nonnalized to 100 Ilmol m·2s·1 of photons in 700-750 nm waveband. 



Table 2. Calculated conversion values for spectroradiometric data of Table 1.* 

PAR PhQtQmetri!;; 
Light Source Barrier W m·~ per Jlmol m·2s·1 Lux per PAR Ft-c per PAR 

(Jlmol m·2s·l
) (Jlmol m·2s·l

) 

Sunlight None 0.22 55.18 5.13 

Incandescent 118 in. Plexiglas 0.20 49.00 4.56 

Cool White 118 in. Plexiglas 0.22 78.75 7.32 
(100 W) 

Vita-Lite None 0.22 62.78 5.84 

Gro-Lux None 37.02 3.44 
Original 

Gro-Lux 118 in. Plexiglas 0.21 55.09 5.12 
Wide Spectrum 0"1 

0"1 

High Pressure None 0.20 83.28 7.74 
Sodium 

Low Pressure None 0.20 106.12 9.87 
Sodium 

Metal Halide None 0.22 74.50 6.93 

Xenon None 0.22 54.16 5.04 

Microwave 114 in. Plexiglas 0.22 67.43 6.27 

CoolWhite+ 118 in. Plexiglas 0.21 74.53 6.93 
Incandescent (100 W) 

In 3: I W ratio 

LED 660 None 0.18 11.75 1.09 

LED 735 None 

* Calculations by Gerald Deitzer, University of Maryland. 
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DISCHARGE LAMP TECHNOLOGIES 

lames Dakin 

GE Lighting, Nela Park, Cleveland, OH 44112, U.S.A. 

INTRODUCTION 

This talk is an overview of discharge lamp technology commonly employed in general lighting, with 
emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant 
growth community, and this begins the light source part of the program, we will start with a brief 
description of the discharge lamps. Challenges of economics and of thermal management make lamp 
efficiency a prime concern in controlled environment agriculture, so we will emphasize science 
considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some 
representative lighting products, and conclude with a discussion of technological advance. A general 
overview of discharge lighting technology can be found in the book of Way mouth (1971). A recent 
review of low pressure lighting discharge science is found in Dakin (1991). The pioneering paper of 
Reiling (1964) provides a good introduction to metal halide discharges. Particularly relevant to lighting 
for plant growth, a recent and thorough treatment of high pressure Na lamps is found in the book by 
deGroot and vanVliet (1986). Broadpractical aspects of lighting application are thoroughly covered in 
the IES Lighting Handbook edited by Kaufman (1984). 

DISCHARGE TYPES 

It is helpful to view discharge light sources from the perspective of the ubiquitous incandescent lamp, 
whose tungsten filament is heated by the passage of electric current, and cooled by radiation. The filament 
temperature, about 2800 K, is a compromise between the desires to have longer life (cooler filament) and 
higher efficiency (hotter filament). At the melting temperature of tungsten, 3655 K, its life would be very 
short indeed. 

A discharge light source, shown schematically in Figure 1, changes the game entirely. Electric current 
heats a gaseous plasma formed between two electrodes and contained within an arctube. The plasma is 
incapable of burning out in the sense of the incandescent filament, and operates at substantially higher 
temperatures where it is a more efficient radiator. Life is limited by phenomena at the electrodes and 
arctube walls. A typical discharge light source has roughly an order of magnitude advantage in both 
efficiency and life when compared to its incandescent counterpart. 

Important physical characteristics of common lighting discharge types are summarized in Table 1. In each 
case, the arctube is characterized by its wall material, internal diameter, gap between electrode tips, and 
wall temperature. An average power density or loading is simply the total power divided by the volume 
between the electrode tips. In most cases there are at least two gaseous species present, one of which has 
the dominant partial pressure, and the other of which is responsible for the radiation. The gas is further 
characterized by an operating pressure and center temperature. The gas is ionized to create electrons, 
which gain energy from the electric field, and lose energy to collisions with atoms in the gas. Some of 
these collisions create excited atoms which in tum radiate releasing photons. It is useful to characterize 
the electrons by their temperature. . 
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Low Pressure Hg-Ar Discharges 

The most familiar form of discharge light source occurs within a fluorescent lamp. The discharge in this 
lamp is referred to as a low pressure Hg-Ar discharge, which is also found in many neon signs. As 
indicated in Table 1, the dominant gas is Ar, but the radiation comes from Hg. This radiation is 
predominantly ultraviolet radiation at 254 nm. The low pressure designation signifies that the collision 
rates are too low for the electrons (11000 K) to reach thermal equilibrium with the gas atoms (300 K). A 
higher pressure would lead to more collisions and better equilibration. The design of the discharge, 
however, is chosen to optimize the production of ultraviolet Hg radiation, for which a low pressure is 
desirable. 

TABLE 1 Discharge Lamp Types 

Type Watts Arctube Gas Press. Temperature 
(Atm) 

Pow (W) mat'l diam gap loading temp dominant radiating gas elec. 
(cm) (cm) W/cc (C) (K) (K) 

LP Hg-Ar 40 glass 3.6 98.0 0.04 42 Ar Hg 0.004 300 11000 
HPHg 400 S.02 1.8 8.0 19.65 700 Hg Hg 2.500 6000 6000 
HPMH 400 S.02 2.0 4.3 29.61 800 Hg Na,Sc 4.000 5000 5000 
HPNa 400 AI2O) 0.7 8.7 112.92 1150 Hg,Xe Na 0.900 4000 4000 

Visible radiation is produced fluorescence when the ultraviolet radiation strikes a phosphor coating on the 
inner arctube wall. While the discharge is very efficient at creating ultraviolet radiation, the conversion to 
visible radiation in the phosphor is inherently inefficient. This is because one ultraviolet photon has 
sufficient energy to make roughly two visible photons, but due to the quantum nature of the conversion 
process makes at most one. 

High Pressure Discharges 

The high pressure discharge lamps in Table 1 are distinguished from the low pressure Hg-Ar discharge by 
their higher powers, smaller sizes, hotter arctube walls, higher power densities, and higher pressures (The 
power density or loading, is the power divided by the volume of the cylander. The cylander volume 
defined by the diameter and the arc gap). These high pressure discharges operate very close to thermal 
equilibrium, with the electron temperature very close to the gas temperature. The centers of these 
discharges are about 5000 K, close to the temperature of the sun. 

In the high pressure Hg discharge, Hg is both the dominant gas and the radiating gas. Unlike the low 
pressure Hg-Ar case, this discharge is designed to optimize the release of visible Hg radiation, 
predominantly in the 405, 435 and 545 nm lines. Even under optimal conditions, much ultraviolet radiation 
remains, limiting its visible efficiency. 

The high pressure Metal Halide or MH discharge is very closely related to the high pressure Hg. Both 
involve high pressure Hg in a fused quartz arctube. In the MH case, the arctube also contains small 
amounts of metal halide salts such as NaI and ScI3• Under operating conditions, these salts reside as molten 
condensates on the arctube walls and low concentrations of their vapors are introduced into the gas volume 
within the tube. Relatively small numbers ofNa and Sc atoms in the discharge radiate more readily than do 
the more numerous Hg atoms. The Na and Sc atoms can do this because their energy levels are lower than 
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those of the Hg atoms. Furthermore, these Na and Sc energy levels radiate predominantly in the visible 
rather than the ultraviolet. This gives the MH discharge a higher visible efficiency than the high pressure 
Hg discharge. 

The visible efficiency of the MH discharge can generally be increased either by increasing the power 
density or by increasing the halide vapor pressure. These approaches go hand in hand with increased 
arctube wall temperature. A practical limit is imposed by the fused quartz arctube material, whose life is 
severely limited at operating temperatures above 900 C. 

The high pressure Na discharge is similar to the MH discharge, involving radiation from Na atoms in the 
presence of Hg. Here, however, much higher Na vapor pressures are achieved by introducing elemental Na 
rather than NaI. The polycrystalline Al20 3 arctube material, unlike quartz, is impervious to elemental Na. 
Furthermore, the Al20 3 is able to operate at a much higher (1150 C). 

The high pressure Na discharge, like the other two high pressure discharges, has a significant thermal 
conduction energy loss due to the several thousand degree temperature difference between the core of the 
discharge and the arctube walls. This loss could be reduced if the intervening gas had lower thermal 
conductivity. In fact, Hg vapor is a pretty good insulator, as gases go, owing to its large atomic mass. 
About the only better choice is Xe. Discharge efficiencies can be increased by using Xe in place ofHg, 
however this introduces practical problems associated with starting and operating voltage. 

LAMP RATINGS AND SPECTRA 

Typical Ratings 

Ratings of representative commercial lamp types are shown in Table 2. Parameters of most immediate 
interest for general lighting are the rated life, and the photopic efficacy (plmlW). In both categories, the 
discharge lamp types all have a considerable edge over the incandescent lamps. The fluorescent and high 
pressure lamp types have "F" and "HP" designations respectively. More will be said about the "MLX" 
types later. 

TABLE 2 Lamp Ratings 

Type Watts Life Photopic lumens Plant growth Scotopic lumens Vis. eff. 
(W) (hours) Wv/W 

plm plmlW RNplm RNW slm/plm slmlW 

inc. 100 750 1750 18 
F-CW 40 20000 3150 79 2.08 164 1.50 118 0.22 
F-PL 40 20000 800 20 5.86 117 2.87 57 0.14 
F-PLIAQ 40 20000 1900 48 3.07 146 1.54 73 0.18 
HPHg 400 24000 21000 53 
HPMH 400 20000 40000 100 2.26 226 1.28 128 0.29 
HPNa 400 24000 50000 125 2.13 266 0.63 79 0.31 
HPNa 1000 24000 140000 140 2.13 298 0.63 88 0.35 
MLXNaNd 400 10000 55000 138 2.25 309 1.78 245 0.42 
MLXCsPr 300 10000 33000 110 2.35 259 2.34 257 0.38 

Three spectral weighting functions are of interest in evaluating the visible radiation produced by these 
lamps. These weighting functions are related to the photopic lumen (plm), the scotopic lumen (slm) and the 
Relative Action for the photosynthetic component of plant growth (RA). The photopic lumen is the most 
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commonly used lumen and is associated with the color-sensitive cones of the human retina. The scotopic 
lumen is associated with rods and night vision. The shapes of these weighting functions are shown in 
Figure 2. All three curves are arbitrarily defined to be 1 at 555 run, which is the peak ofthe photopic lumen 
curve. Light at 555 nm is defined as having an efficacy of 683 plmlW and 683 slmIW. 

The RA function in Figure 2 is that reported by McCree (1971) for the average field plant species, and has 
been normalized here so that RA=plm=slm for 555 run radiation. Plants show less color discrimination than 
does the human eye. The RA response is the broadest of the three curves, and is higher in the red where 
there are more quanta of light per unit of energy. McCree shows, however, that over the 400 to 700 run 
range a uniform quantum efficiency does not fit the data much better than does a uniform energy efficiency. 
The main point to be made with Figure 2 is that lamps developed for general lighting are not necessarily 
optimal for plant growth. 
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Fig. 2 Spectral weighting functions 
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Two different measures of power are indicated in Table 2. W represents the total Watts entering the lamp 
electrically. Wv represents the number of Watts leaving the lamp as visible radiation (380-760 run). The 
visible efficiency ratio (Wv/W) shows what fraction of the total power leaves the lamp as visible radiation. 
The balance leaves primarily as infrared radiation, some emitted by the discharge, but most emitted by 
various solid components in the lamp assembly. Among the commercial lamp tYI~es, the high pressure Na 
lamps have the best Wv/W ratios. 

Spectra 

The fluorescent lamp offers enormous opportunity for spectral variation merely through changes in the 
phosphor. The spectra of three commonly used GE fluorescent lamps are shown in Figures 3-5. Each 
involves a completely different phosphor system. Figure 3 shows the spectrum of the standard cool white 
fluorescent lamp. This lamp is commonly found in indoor commercial applications. The spectra shown in 
Figures 4 and 5 are the result of combining phosphors which have emissions in the far red and blue regions 
of the spectrum so as to concentrate power near the two peaks in the RA curve shown in Figure 2. These 
spectra are deficient in green, and make objects appear purple, which is desirable in some circumstances. 
Table 2 shows that these lamp types have very different RAlW, plmlW and slmlW efficiencies. 
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The high pressure lamp types are more attractive than fluorescent lamps for many plant growth applications 
due to their somewhat higher efficiencies, and their ability to provide more light per fixture. The two most 
important types for plant growth have the spectra shown in Figures 6-7. The high pressure MH spectrum 
shown in Figure 6 contains prominent Na, Sc and Hg lines which are reasonably well distributed 
throughout the visible spectrum. MH spectra based on other chemistries are also possible. Many examples 
are shown in the paper of Reiling (1964). The high pressure Na spectrum shown in Figure 7 contains only 
Na lines, and is dominated by the self reversed Na resonance line at 589 nm. Table 2 shows the high 
pressure Na lamp to be more efficient for plant growth, as measured by RAlW, than any of the other 
conventional lamp types. 
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Fig. 6 HP MH Spectrum 
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Electrodeless High Pressure Lamps 

New electrodeless discharge technology being developed at GE, but not now commercially available, offers 
considerable promise for plant growth. This technology involves a metal halide discharge operating in a 
fused quartz arctube without electrodes or Hg. Power is applied by an inductive exciter operating at 13.56 
MHz. The lamp configuration is similar to that described by Dakin et al. (1992). Without electrodes, a 
wider range of halides can be used, and wall blackening associated with tungsten transport is avoided. Two 
of the many possible halide doses are Nal plus NdI3 and CsI plus PrI3• Ratings and spectra achievable with 
these doses are indicated by the MLX entries in Table 2, and Figures 8 and 9. The CsPr spectrum is 
populated by myriad Pr atomic lines, with little or no contribution from Cs. The NaNd spectrum has a 
similar contribution from Nd atomic lines plus the strong Na lines seen earlier in Figure 7. The NaNd 
system is seen to be more efficient than high pressure Na systems by all measures, and to provide more 
blue radiation as well. 
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Fig. 9. MLX NaNd Spectrum 

207 



ADVANCES 

For more than a century, technological advances have enabled the electric lighting industry to steadily 
introduce better products. That trend continues today. In the incandescent, fluorescent and high pressure 
categories, new products are available with significant performance advantages over the more familiar 
types indicated in Table 2. We will quickly review some of the technological advances which are making 
these new products possible. 

Materials 

Materials have long had center stage in lighting advances. This is due to fundamental life-performance 
tradeoffs related to material operating temperatures. A landmark historical advance was the development of 
translucent polycrystalline A120 3, which made the high pressure Na lamp possible. A more recent advance 
is fluorescent lamp phosphors capable of operating at higher temperatures. Another is high temperature 
dichroic films capable of trapping infrared radiation inside an incandescent lamp while allowing visible 
radiation to escape. 

Ballasting and Electronics 

Discharge lamps require ballasts, shown schematically in Figure 1, to limit and control the current which 
they draw from the electric mains. These ballasts have traditionally been passive electromagnetic devices 
made of copper and iron, the simplest example being a series inductor. Recent advances in power 
semiconductors and control circuitry have enabled the development of cost effective electronic ballasts. 
These typically operate at high frequency, and are smaller, lighter and more efficient than their 
electromagnetic predecessors. The electronics also enable simple control features such as dimming, and 
more specialized control features related to idiosyncrasies of the discharge lamps. As shown by Osteen 
(1979), for instance, the blue emission from the high pressure Na lamp can be enhanced by operating on a 
pulsing ballast with suitable frequency and duty cycle. Electronic ballasting is quite common in new 
fluorescent installations, and is beginning to appear for low power high pressure lamp types. 

New Lamp Types 

A number of new discharge lamp types have appeared in recent years. These have been made possible by 
new technology, and encouraged by market forces such as energy conservation. The most conspicuous new 
types are the compact fluorescent lamps with integral ballasts. These are direct replacements for screw-in 
incandescent lamps, offering the cost and energy savings inherent to fluorescent lighting without the need 
to install new fixtures. Compact fluorescent lamps with integral ballasts represent a tour de force of new 
technology, relying on advances in phosphors, electronics, high speed manufacturing, and more. Other new 
discharge lamp types include a proliferation of low wattage high pressure Na and MH lamps. 

More relevant to plant growth are new high pressure Na types with higher efficiency, brought about by 
increasing the Xe pressure. Other high pressure Na types of possible interest in plant growth operate at 
higher Na pressure to provide more blue radiation, but at the expense of reduced overall efficiency. 
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CONCLUSIONS 

The lighting industry provides a wide range of commercial discharge lamp types, each offering a unique 
combination of wattage, efficiency and spectral power distribution. Only a small fraction of the available 
lamp types have been indicated here. Most of these lamps have been developed for general lighting, where 
the costs of technological advance are justified by large markets for better products. Many of these same 
lamps are applicable to plant growth, however, where the spectral requirements are somewhat different than 
those for human vision. Of particular interest in lighting for plant growth are new fluorescent lamp 
phosphor systems, ongoing advances in the high pressure Na lamp, and the introduction of new types such 
as the electrodeless high pressure lamp. 
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FLUORESCENT AND HIGH INTENSITY DISCHARGE LAMP USE 
IN CHAMBERS AND GREENHOUSES 

Robert W. Langhans 

Cornell University, Ithaca, NY 

INTRODUCTION 

Fluorescent and High Intensity Discharge lamps have opened up great opportunities for 
researchers to study plant growth under controlled environment conditions and for commercial 
growers to increase plant production during low/light periods. Specific technical qualities of 
fluorescent and HID lamps have been critically reviewed by Dr. James Dakin. I will direct my 
remarks to fluorescent and high intensity discharge (HID) lamps in growth chambers, growth 
rooms, and greenhouses. I will discuss the advantages and disadvantages of using each lamp in 
growth chambers, growth rooms and greenhouses. 

Growth Chambers are small (3m x 4/m and smaller) walk-in or reach-in enclosures with 
programmable, accurate temperature, relative humidity (RH) and irradiance control over wide 
ranges. The intent of growth chambers was to replicate sunlight conditions and transfer research 
results directly to the greenhouse or outside. It was quickly realized sunlight and outside 
conditions could not be mimicked. We now appreciate most of the reasons, which include 
spectral quality, irradiation level and long wave differences. Today, it is recognized that it is of 
principal importance to provide radiation environments which can be repeated, so experimental 
plants can be compared over time, among chambers and among locations. Growth chambers are 
also used to study irradiance and spectral fluxes. 

Growth Rooms are usually large rooms (larger than 3m x 4m) with only lamp irradiance, but 
providing relatively limited ranges of environmental control (i.e., 10 to 30 C temperature, 50 to 
90% RH and ambient to 1000 ppm C02), and commonly independent of outside conditions. The 
narrower range of environmental conditions (as compared to growth chambers) reduces 
construction costs without a great loss of accuracy of control. Irradiance requirements for growth 
rooms are similar to those of growth chambers, i.e. standardized spectral quality and uniform 
irradiance in the growing area. Growth rooms are also used for growing a large number of plants 
in a uniform standard environment condition, such as commonly required for Plant Science 
teaching, Plant Breeding, Entomology and Plant Pathology research. Growth rooms are also used 
in commercial horticulture for tissue culture, seed germination (Plugs) and seedling growth. 

Greenhouses are designed to allow maximum sunlight penetration through the structure. Initially 
greenhouses were used to extend the growing season. Then as heating systems, and cooling 
systems improved, they were used year round. Low light during the winter months reduced plant 
growth, but with the advent of efficient lamps (HID and fluorescent) it became possible to 
increase growth to rates close to that in summer months. Supplementary lighting is used during 
low light periods of the year and anytime to ensure consistent total daily irradiance for research 
plants. 
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FLUORESCENT-GROWTH CHAMBERS 

Assets: 

1. Cool White fluorescent (CWF) lamps have been and are the standard lamps used in 
growth chambers. Much of the experimental growth chamber results reported in the 
literature is based on CWF grown plants. 

2. CWF lamps have the greatest moles ofPPF output efficiency of all fluorescent lamps. 
3. Spectral distribution of the CWF lamp is reasonable. Other fluorescent lamps warm 

white, daylight, etc. have different spectra and some of them have spectra closer to 
sunlight, but the total mole output of PPF is reduced. 

4. Photon levels in chambers of up to 600 umol m-2s-1 can be achieved. 

Liabilities: 

1. CWF and most other fluorescent lamp are not identical to sunlight. One difficulty trying 
to mimic sunlight is the solar intensity varies from location to location and is constantly 
changing. 

2. Fluorescent lamps have a relatively short lamp life (5,000 to 10,000 hrs.), compared to 
HID lamps. 

3. Must use VHO fluorescent lamps to obtain useful levels ofPPF. 
4. Fluorescent lamps have a rather rapid decay rate. We have recorded a loss as much as 30 

umol m-2s-1 in a week. The output of the lamp decays 75% over the life ofthe lamp. 
Replace 113 of the lamps every 3 or 4 months to maintain more uniform PPF. 

5. The decay rate for new lamps is particularly rapid. Therefore, lamps should be operated 
for 100 hours before use in a research study. 

6. PPF should be measured weekly. 
7. The plant growing bench has to be adjusted up or down to maintain a desired PPF level 

at the top of the plant canopy. 
8. Temperature of the lamp is critical to obtain maximum PPF output and longevity (an air 

temperature of 20° C is best, permitting optimum lamp bulb surface temperature of about 
40° C). Therefore, the light cap area in a growth chamber should have good temperature 
control. If the temperature of the light cap varies, temperature of the lamp will vary and 
PPF output will vary. 

9. Changes in line voltage will shorten lamp life. 
10. PPF levels higher than 600 umol m·2s-1 are difficult to obtain. 
11. Special plant grow lamps emit less PPF and are not recommended for use in growth 

chambers. 
12. PPF levels close to the walls of the chamber are significantly lower than in the rest of the 

chambers. Each chamber should have PPF levels measured and plotted. Care should be 
taken to grow plants in known PPF locations. The growing area should be blocked to 
obtain effective experimental design. 
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FLUORESCENT - GROWTH ROOMS 

Assets: 

1. The assets are the same as for growth chambers. 
2. If lack of height is a problem in the growth room, fluorescent lamps must be used to 

ensure uniform PPF. For example, rooms used for tissue culture or germination require 
fluorescent lamp, where the material is grown on closely-spaced shelves. 

Liabilities: 

1. Liabilities are the same as listed for the growth chambers. 
2. For large rooms, fluorescent lamps may not be appropriate, because the installation of the 

barrier may be difficult. The barrier is needed to maintain the optimum temperature 
around the lamps. 

FLUORESCENT-GREENHOUSES 

Assets: 

1. Assets are the same as for the growth chamber. 
2. Lamps are easy to install. 

Liabilities: 

1. Most liabilities are the same as listed for the growth chambers. 
2. Lamps cause excessive shade on a greenhouse bench. 
3. Lamps need to be positioned close to the plant material (less than 1 meter) to provide 

useful levels of PPF. 
4. Fixtures may be exposed to dripping water or water sprays and, therefore appropriate 

precautions should be taken (ground fault interrupters). 

HID - GROWTH CHAMBERS 

Assets: 

1. HID lamps are required to attain PPF levels above 500 umol m-2s-1 • Up to 1500 umol m-
2S-1 can be achieved with HID lamps. 

2. HID lamps have long lamp life. (30,000 hours for High Pressure Sodium lamps and 
15,000 for Metal Halide lamps) 

3. HID lamps have a high efficiency of PPF output, compared to other lamps. 
4. Metal halide lamps have spectra satisfactory for plant growth without other sources. 
5. Spectra from HPS lamps appear satisfactory at high PPF (>700 umol m-2s-l

) but at lower 
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PPF the spectra from HPS lamps may be deficient in blue for many plant species. 

6. Dimming ballasts can be used to change and control irradiance output. A 30% reduction 
can be used with HPS, without changing the spectra. Greater re-ductions may change 
spectral emissions and may turn the lamp off. There is up to a 10 minute delay in 
restarting of HID lamps. They can only be restarted at 100% of full power and then 
dimmed. 

Liabilities: 

1. Longwave radiation is a problem when HID lamps are installed to provide high PPF 
levels. Barriers and/or water can be used to reduce this long wave irradiance (3,000 nm 
and above). A barrier must be cooled with air and water passed through a heat 
exchanger, to remove the heat. 

2. Plant material cannot be grown close to HID lamps, or heat damage will occur (no closer 
than 1 meter). 

3. Uniform ofPPF on the growing surface is difficult to obtain. Computer programs are 
available for HID lamp installations to insure uniform irradiance. 

HID - GROWTH ROOMS 

Assets: 

1. Same assets as for growth chambers. 
2. High irradiance levels are usually desired (500 to 1,000 umol m-2s-1

) and can be achieved 
with HID lamps. 

3. To produce a umol m-2s-I, it is more efficient to use HID lamps. 
4. HPS lamps produce more mol m-2 per electric input than metal halide lamps. Metal 

halide has a better general spectra ofPPF, than HPS which peaks at 550 to 660 nm. 

Liabilities: 

1. Same liabilities as for growth chambers. 
2. Heat load from long wave radiation is high at high PPF and requires considerable cooling 

capacity. 
3. Barriers to reduce long wave radiation may be difficult to install in large rooms. Water 

cooled lamps may be a better solution for heat removal, which in turn could reduce the 
size of the mechanical refrigeration. 
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HID - GREENHOUSES 

Assets: 

1. Same assets as for growth chambers. 
2. HPS lamps are best, because oflong lamp life, up to 30,000 hours, a small decrease in 

output of PPF over the life of the lamp, and the best efficiency of PPF for power used. 
(Low levels of blue wavelengths are satisfied by levels from sunlight). 

3. Heat can be an asset during cold winter nights and on a normal winters night may supply 
25% of the heating requirement. 

4. With a supplemental lighting level of200 umol m·2s·1, 26 mol m,2 day·l can be achieved 
in most greenhouses in the US during the darkest months of the year by the combination 
of natural and supplementary light. 

5. PPF uniformity (less than 15% variation) can be achieved with efficient luminaries and 
proper installation. 

6. Computer programs are available to determine proper luminare installation for uniform 
irradiance. 

Liabilities: 

1. Same liabilities as for growth chambers. 
2. Limit lamp installation to 200 umol m,2s,l PPF or heat from the lamps and shade from the 

luminaries become too great. 
3. Low levels ofPPF (less than 50 umol m,2s,l) will present a problem to obtain uniform 

PPF. 
4. Plants should be at least 1 meter below the lamps or long wave radiation will cause bum 

(heat) problems. 
5. Ballasts (some models) can be remote from the lamps and luminaries to reduce the live 

load on the greenhouse structure and reduce shading of the plants. 
6. Heat from the lamps can 'over heat' the greenhouses during mild outside temperature 

(above 0° C) and will cause exhaust fans to cool. 
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SHORT REpORT 

MANAGEMENTOFFLUORESCENTL~SINCONTROLLED 

E~ONMENTCHAMBERS 

Mark Romer 

McGill University Phytotron, Dept. of Biology, 1205 Ave. Dr. 
Penfield, Montreal, Quebec, Canada H3 A 1B 1 

Management of fluorescent lights is recommended to: 
[a] maintain uniformity of light intensity over time and 
[b] permit reproducibility of lighting conditions during experimental replications. 
(chamber x chamber) (chamber x time). 

At the McGill Phytotron, the lighting intensity can be controlled to desired level because any 
individual pair of the 40 lamps in each chamber can be set to be 'on' at any particular time. 

Lamps are evenly divided into four lamp groups of differing hours of use. One-fourth of the 
lamps are replaced each 1500 hours of use. Thus at any time the lamps in the chamber will have 
the following range in hours of use: 

25% tubes 25% tubes 25% tubes 25% tubes 

0-1500 1500-3000 3000-4500 4500-6000 

This replacement procedure has provided the following history of use for providing PPF in one of 
the chambers. 

Jan. 16 Replacement April 16 Replacement July 20 Replacement 

Before After Before After Before After 

Group A 4600 4600 6200 0 1480 1480 

GroupB 3300 3300 4750 4750 6250 0 

Group C 1650 1650 3010 3010 4650 4650 

GroupD 6200 0 1600 1600 3250 3250 

PPF (t.lmol m-2s-1) 515 560 530 610 540 580 

Tube burning hours for each level are logged by the chamber control microprocessor but can also 
be manually tracked by numbering tube-pairs and calculating age (photoperiod x days). 
Intensities should be measured at the start and weekly over the entire course of an experiment to 
obtain averaged vs. initial PPF readings. 

A lamp canopy service history is maintained for each experiment permitting accurate replication 
of lighting conditions for subsequent replicate trials. 
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SHORT REpORT 

DIMMING OF METAL HALIDE LAMPS 

Kees Schurer 

IMAG-DLO, P.O. Box 43, 6700 AA Wageningen, The Netherlands 

We ran some tests on the effect of dimming of metal halide (MH) lamps upon the 
stability and the spectral quality of the light output. Lamps used were a new Philips lamp 
HPI-T 250W, a similar Philips lamp with a few thousand burning hours and a new Osram 
lamp HQI-T 250W/D. The ballast was a BBC type DJ 25012KS, the starter a BAS 
TORGI type MZN 250 SE and the dimmer an Elstrom Control System type ERHQ-T 
250. Power was derived from a Philips stabilizer, type PE 1602. 

Lamp output was monitored with a PAR meter. Spectra were taken at 100% and at 50% 
output as measured with the PAR meter. Lamps were allowed to stabilize at any setting 
for 30 minutes before measurements were made. Lamp current at 100% and 50% was 
found to be 3.0 A and 2.6 A respectively for the Osram lamp, and 2.2 A and 1.5 A 
respectively for the Philips lamps. 

Lamp manufacturers advise against dimming for fear of poor stability and intolerable 
changes of the spectrum. However, none of the lamps showed a decrease in stability, no 
flicker or wandering of the discharge, and the changes of the spectrum were not 
negligible, but certainly not dramatic. Lamps of either manufacture retain their white 
color, relative peak heights of spectral lines did shift, but no gaps in the spectrum 
occurred. Spectra taken at 50% with 30 minutes intervals coincided. Differences between 
the new and the older Philips lamp were noticeable, but not really significant. 

The figures show spectra for the new Philips and Osram lamps in a horizontal burning 
position at 50% and 100% light output. These are direct recordings of the photomultiplier 
(Hamamatsu R 636) signals in a monochromator system with a spectral bandwidth of 1.25 
nm (FWHM), measured in 1 nm intervals. 
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SHORT REpORT 

ENHANCEMENT OF EFFICIENCY IN THE USE OF LIGHT FOR CULTIVATION 
OF PLANTS IN CONTROLLED ECOLOGICAL SYSTEMS 

A.L. Mashinsky*, V.l. Oreshkin*, and G.S. Nechitailo** 

*Institute of Biomedical Problems, Moscow, Russia 
**Npo Energiya, Kaliningrad, Moscow region, Russia 

The problems of plant cultivation with the use of artificial lighting are related to energetics and, 
first of all, to the lack of effective sources for photosynthesis, secondly to the necessity to supply 
a system with a considerable power in the form of light energy and to remove transfonned 
thermal energy, and finally to economic considerations. These problems are solved by three 
ways: by the choice of effective radiation sources, design approaches, and technological methods 
of cultivation. We shall consider the first two ways. 

Analysis of the characteristics of available light sources (Table 1) shows that filament lamps 
have a low efficiency coefficient and high infrared radiation (IR): Metal halide lamps have a 
high efficiency coefficient (up to 38%), a continuous spectrum and a short life. Besides, their 
control scheme is rather complicated. Fluorescent high-pressure lamps have a low efficiency 
coefficient and a large size of the luminous body which interfers with the redistribution of their 
radiant flow. Compact K.L 7-11 lamps have good prospects. They are characterized by a high 
surface radiation density and a small size permitting the redistribution of their radiant flow. 
However they have not been tested for their use in space. Fluorescent low-pressure lamps and 
sodium high-pressure lamps also appear to be promising. The main characteristics of fluorescent 
lamps and sodium high-pressure lamps are presented in Table 2. All these lamps are 
characterized by a high surface radiation density providing a radiation level sufficient for plant 
growth and development. It is kn.own from ground-based experiments that the cultivation of 
plants requires a radiation level of no less than 70 W P ARlm2 with a P ARlIR ratio of no less than 
1 :4. This means that for an area of 1.0 m2

, 88 lamps would have to be installed utilizing 0.7 kW 
of electrical energy. When using 11 W compact lamps, 40 lamps would be needed with a power 
demand of 0.55 kW. 

Special 8 W white fluorescent lamps were designed for space plant growth units and also used as 
light sources for general use on the ground: SD 1-4 (llamp), SD 1-5 M (llamp), SD 1-7 (2 
lamps) and PSB (6 lamps). The light device ARNlKA with a sodium high-pressure lamp, 
DNaT-70, was designed for space experiments. 

Under ground-based conditions we carried out an experiment to estimate the efficiency oflight 
devices SD 2-7, PSB (with white and red- and blue-colored lamps in the ratio of3:2:1). In a 
mixed spectrum the productivity of lettuce was found to be increased by 20-25%. Also, some 
changes in the biochemical composition of plants were noted. The productivity of plants upon 
equalization of light power under DnaT -70 lamps corresponded to the growth with a mixed 
spectrum and significantly exceeded that under lamps with a continuous spectrum. 
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TABLE 1. Some characteristics of lamps for irradiation. 

Class of lamps Power range Life (h) PAR:IR Notes 
(W) (400-700:700-

1200) 

Filament unlimited up to 2000 1:7 

Fluorescent 
Low-pressure 4-lS0 3000-lS,000 1:0.0S used in space 
High-pressure 80-2000 IS,OOO 1:1 investigations 

Metal halide 2S0-2000 200-2000 1:0.7 

Sodium high- 70-1000 up to IS,OOO 1:0.4 prepared for 
pressure the use in 

space 
investigations 

TABLE 2. Main characteristics of Fluorescent lamps. 

Type of Power, Size, mm Power in the Superficial Notes 
lamps W PARzone,W rediation 

density 

LB4-2 4 16x160 0.6 90 

Fluorescent 8 16x298 1.4 lIS used in space 
LB8-6 investigations 

L38 8 16x298 1.6 130 no analogs 

LS8 8 16x298 1.2 100 no analogs 

LK8 8 16x298 1.4 l1S no analogs 

KLlTBS 7 13Sx32x20 1.3 ISO not tested in 
KL/TBY 11 23Sx32x20 2.S 190 for space 

investigations 

The first lighted unit used for plant cultivation under space flight conditions, Oasis-I, was placed 
aboard the first orbital station Salyut. the electric power demand of this apparatus was 30 W. 
Three SD 1-4 light devices with white fluorescent lamps were used. Nine plants provided with 6 
cm2 each, were placed within an irradiated area of 400 cm2

• The rate of the luminous flow 
reached 2S±S W PARlm2

• Later on, modified light devices SD I-S M and SD 1-7 were used in 
Svetoblok, Fiton, Malakhit and in modified Oasis-l AM aboard the orbital stations Salyut and 
Mir. Using white fluorescent lamps, LB 8-6, in the growth unit, Svet, aboard the station Mir, the 
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power in the PAR region was increased up to 30±10 W/m2 due to a more compact arrangement 
of lamps (6 lamps per 500 cm2

). This required the use of a heat removal system, thus the total 
energy in the vegetation chamber was increased. Fluorescent lamps were used in the American 
PGU. Light diodes have been used in the University of Wisconsin Astroculture flight unit. 

With the above-mentioned devices, fundamental results in the field of space biology were 
obtained directly related to the development of maned space fliglits, particularly to the possibility 
of creation of biological life-support systems. A fundamental possibility of growth and 
development of plants under micro gravitation conditions, including the stage of seed production, 
was demonstrated (Merkis, Laurinavichus, 1980; Mashinsky, Nechitailo et aI., 1992; Nechitailo, 
Mashinsky, 1993). At the same time, the problem of lighting efficiency remains. As early as the 
middle seventies we began constructing a chamber to provide one astronaut with a daily ration of 
vitamins and a part of the vegetable ration, to improve the psychological comfort of astronauts, 
and to develop studies on the use under micro gravitation conditions of higher plants as an 
element of the life-support system. The device was named KAMIN (by the first letters of the 
family names of the authors - Konshin, Alexander Mashinsky and Nechitailo). 

Plants grown in Kamin are assumed to produce 20 g of dry biomass daily for 1.0 m2 area under 
the following conditions: carbon dioxide at 0.3±0.05%, oxygen at 18±3%; air humidity at 
80±15%; temperature at 20±5°C (the temperature difference between the vegetation and root 
zones should be no less than 2-5°C), irradiation at 100±20 W PARlm2

• The basis of the device is 
a cylinder with a vegetation unit on its inner surface. The cylinder is able to rotate on bearings 
relative to the growth chamber body and the lighting unit, which is located excentrically in the 
cylinder, thus providing for even illumination of plants of different age in the units. The plants 
are grown in units by the conveyor method (each unit contains plants of different age). 

We returned to the idea of using the new design units for improving illumination conditions 
when developing a modified Svetoblok-2 together with a group of U.S. scientists from the 
University of Utah. The leader from the U.S. side was Professor F. Salisbury. As a result of the 
joint work of the American and Russian scientists, a model was constructed to be used in joint 
Russian-American space research programs. The idea initially consisted in placing lamps 
vertically in an ellipse focus which formed a light-reflecting surface. In the other focus it was 
planned to place plants. Thus, the whole light energy reflected from the ellipse surface would 
remain in the vegetation zone. The data indicate that the given technological approach permits 
an enhancement of lighting efficiency providing for photosynthesis. Unfortunately, it should be 
stated that this work has not yet received further development as a cooperative Russian
American project for joint investigations aboard orbital stations. Therefore the Russian 
specialists offer to other interested scientists to continue this joint activity. 
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SHORT REpORT 

SYSTEMS OF ARTIFICIAL LIGHTING AT THE PHYTOTRON 
OF PLANT BREEDING AND GENETIC INSTITUTE (ODESSA). 

Adolf Chemozubov 

Laboratory of Engineering Problems of Phytotron, Odessa, Ukraine. 

At the Odessa Phytotron we have installed over 50 climatic chambers and cabinets made by 
various companies of the United States, Canada, Germany and U.S.S.R. They employ different 
light sources including Sylvania fluorescent lamps of various types, fluorescent lamps produced 
in the former Soviet Union with a specialluminophore, ordinary tungsten lamps, xenon, 
mercury, mercury-iodide, sodium, etc. Our objective in lighting is that the intensity distribution 
over the wave lengths should be maximal in the photosynthetically active part of the spectrum 
and minimal in the IR part to avoid plant sterilization. 

Phytotrons are extremely energy consuming entities, and the large part of their energy 
consumption falls into the lighting category in our electric bills. Therefore, we are in a constant 
search of the processes to reduce energy, for example, we use a mirroring polychlorovinyl film as 
light deflector, we create combined light sources, we have even employed movie projection 
lamps in combination with monochromators and attempted the use of fiber glass optics. 
However, the main way to increase effectiveness would be the development of new types oflight 
sources, which wO.uld come close to the threshold of 150 to 200 lumens per watt. 

Over the years we were constantly improving our systems of artificial lighting, since we had 
good contacts with several producers and inventors in Russia. However, with the economic 
crisis unfolding, our Phytotron is having a difficult time keeping the equipment updated. 

However, I should point out here, that our Phytotron is the only operating plant breeding 
Phytotron in the territory of the former Soviet Union. We will certainly do our best to keep it 
running and will continue our fruitful experiments. We are open for collaboration and welcome 
anybody who wants to deal with us on a basis of mutual cooperation. 
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SHORT REpORT 

MARTORVASARPHYTOTRON 

T. Tichenor 

Agricultural Research Institute of the Hungarian Academy of Sciences 
H-2462 Martonvasar P.O.B. 19, Hungary 

Lighting in the Martorvasar Phytotron plant growth units is as follow: 

24 units - Cool white and Gro-Iux fluorescent 1:1 or Cool white and incandescent lamps 3:1. 

24 units - Metal halide lamps 

REFERENCES 

Tischner, T. (1993); Lighting for plant growth in the Martonvasar Phytotron. p. 400-407 In: Lux 
Europa, VII.ELC, Herior-Watt University, Edinburgh. 

Tischner, T. (1993); Fluorescent lamps have been replaced by metal halide lamps in the 
Martonvasar Phytotron. p. 464-469 In: Right Light, II ECEEL, Amhem. 
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XENON LIGHTING ADJUSTED TO PLANT REQUIREMENTS 

M. K6fferlein, T. Dohring, Hans D. Payer* and H.K. Seidlitz 

GSF-Forschungszentrum fUr Umwelt und Gesundheit, EPOKA, Postfach 1129, D-85758 
Oberschleissheim, Germany 

INTRODUCTION 

When electricity started to replace the flame techniques for lighting the discharge between two 
carbon electrodes was the first electric light discovered in 1809. Fifty years later the electric 
heating of carbon filaments started a competitive lighting technique. Both types of lighting are 
still competing with each other (Neumann 1977). The preference at the time being depends on 
the applicability and economy of the particular brand. The discharge techniques, however, due 
to economic and spectral improvements seem to be still promising in the long run (Meyer and 
Nienhuis 1988). 

Xenon arc lamps were introduced to lighting about 50 years ago (Schulz, 1947,Larche 1955) 
when temperature radiators dominated the lighting technique and discharge lamps had just 
started to be developed for a wider market. Both of these lamp types were limited in power, in 
lifetime, and in colour rendering. Progress in glass production and handling techniques had 
reached a level permitting the construction of high pressure bulbs which are necessary for an 
increased gas filling. Xenon is the heaviest stable noble gas and has the lowest ionization 
threshold (12.1 eV) of the noble gases. It promised a considerable improvement of luminous 
efficacy combined with a smooth spectrum at gas pressures of 105-107 Pa. 

While most discharge lamps e.g. mercury, sodium, or metal halide lamps emit a more or less 
pronounced line spectrum, the radiation output of xenon is dominated by a smooth continuum 
Schafer 1969, Popp 1977), resulting from the recombination between electrons and positively 
charged xenon ions. As the recombination process involves the population of excited xenon 
states which thereupon relax to the ground state, some weak lines in the visible part and strong 
lines in the near infrared region are also observable. Due to the favourable coincidence of 
some atomic parameters of xenon, the continuum is centered around the green spectral range 
(550 nm) and thus a good approximation of the natural sun spe~trum is achieved. 

Xenon lamps are available as low and high power lamps with relatively high efficiency and a 
relatively long lifetime up to several thousand hours. Different construction types of short-arc 
and long-arc lamps permit a good adaptation to various applications in projection and 
illumination techniques without substantial changes of the spectral quality. Hence, the xenon 
lamp was the best choice for professional technical purposes where high power at 
simultaneously good spectral quality of the light was required. 

*Paper presented by H. D. Payer 
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However, technical development does not stand still. Between the luminous efficacy of xenon 
lamps of 25-50 ImlW and the theoretical limit for 'white light' of 250 ImlW is still much room 
for improvement. The present development mainly favours other lamp types, like metal halide 
lamps and fluorescent lamps for commercial lighting purposes (Kaufmann and Christensen 
1984). 

The following sections deal with some of the properties of xenon lamps relevant to plant 
illumination; particularly the spectral aspects, the temporal characteristics of the emission, and 
finally the economy of xenon lamps will be addressed. Due to radiation exceeding the natural 
global radiation in both the ultraviolet (UV) and the infrared (IR) regions, filter techniques 
have to be included into the discussion referring to the require~ents of plant illumination. 
Most of the presented results were obtained by investigations in the GSF phytotron 
(constructed by Heraeus-V6tsch, Balingen according to Payer et al. 1986 and 1993) or in the 
closed Phytocell chambers of the University of Erlangen (constructed by BBC York, 
Mannheim, according to a design by Hartmann and Kaufmann 1990). As our experiences are 
restricted to area plant illumination rather than spot lights our discussion will concentrate on 
low pressure long-arc xenon lamps which are commonly used for such plant illuminations. As 
the spectral properties of short-arc lamps do not differ much from those of long-arc lamps 
most of our conclusions will be valid for high pressure xenon lamps too. These lamps often 
serve as light sources for small sun simulators and for monochromators which are used for 
action spectroscopy of plant responses. 

MATERIALS AND METHODS 

The Li~ht Sources: Lamp and Filter Techniques 

Two long arc xenon lamps, 4500 W each (NXE 4500, Heraeus Hanau) and the corresponding 
electric devices and instructions were provided by Heraeus Original Hanau. The lamp house, 
its heat absorber, and ventilation instructions were provided by Heraeus V6tsch Balingen 
(according to the design for the GSF phytotron, Payer et al. 1986, adapted from Boxhammer 
1981). The front cover consisted of 2 mm fused quartz slides. The reflector is formed by cold 
light mirrors (Schott, Mainz). The complete luminairy consisted of two xenon lamps 80 cm 
apart, mounted 180 cm above plant level. It was integrated into the lamp ceiling of a recently 
developed sun simulator (Seckmeyer and Payer 1993). Optionally a water filter for IR filtering 
(Warrington et al. 1978) and glass filters for UV or IR absorption are available. The residual 
ceiling and walls of the lamp compartment are cladded with highly reflecting panels of 
anodised aluminium. Particularly for the comparison of the lighting efficiency the xenon 
lighting system of the Phytocell chambers at the University of Erlangen was evaluated 
(Hartmann and Kaufmann 1990). The Phytocells at Erlangen are equipped with two long arc 
xenon lamps (Osram XQO, 10000 W each) installed at a distance of 80 cm from each other 
and 120cm above the plant level. Cold mirrors type 213 (Schott, Mainz) serve as light 
reflectors, the IR rejection is performd by coated glass filters type 112 (Schott, Mainz) . Two 
6 mm layers of security glass SPRIDUR are used to separate the light compartment from the 
experimental space. 

Measurements 

General lighting parameters were measured with integrating instruments. Total radiation was 
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determined with a pyranometer (Kipp + Zonen CM 11, 300 - 2500 run). Illuminance and 
photosynthetic active radiation were measured with sensor heads made by Licor (Luxmeter LI 
210) and (Quantum counter LI 190,400 - 700 run) PRC Krochmann (Luxmeter 110). UV-B 
radiation was recorded with a Robertson-Berger-Meter (Biometer 501, Solar Light). For 
spectral measurements spectroradiometers were used. Light, respectively radiation was 
collected by a cosine adapted diffusor and coupled into the monochromators, residing outside 
the chamber, by means of a 2 m quartz fiber bundle. All sensors were placed directly into the 
plant compartment at a distance of 180 cm below the lamp. 

As the whole spectrum measured from 250 to 1350 run cannot be covered with a single 
monochromator/detector combination, the spectral range was divided into the following four 
parts with adequate overlapping of each other: 

A) 250 to 500 run: A double monochromator (Bentham M300HRI2) with two gratings of 2400 
grooves/mm and a photomultiplier (EMI 9558BQ) as detector were used. Its spectral 
resolution was adjusted to 1 run, the detection limit was 0.01 mW/m2 run 

B) 400 to 850 nm: A single monochromator (Bentham M300HR) with a grating of 1200 
grooves/mm and a photomultiplier (EMI 9558BB) as detector were used. Its spectral resolution 
was 5 run, the detection limit better than 0.01 mW/m2 run 

C) 750 to 1100 nm: Monochromator: same as B). The detector was a silicon diode, the 
detection limit was approx. 1 mW/m2 run 

D) 900 to 1350 nm: Monochromator: same as B). The detector was an uncooled lead sulphide 
cell. The detection limit was approx. 20 mW/m2 run 

Calibrations were performed by using a calibrated deuterium lamp (k < 280 run) and a 
calibrated 100 W halogen lamp for the remaining spectral range (pTB Braunschweig). Spectral 
irradiances for the unfiltered radiation (UV to IR transparent quartz slides served for 
protection) and the water filtered radiation were measured directly. Irradiances for other filter 
combinations were derived from those using the spectral transmission data of the individual 
filter materials. 

The electric power consumption was read from electricity meters and included the energy for 
ballast. The energy for cooling was not included. These measurements formed the basis for an 
estimation of the lighting efficiency of our lamp assembly. 

The optical measurements at the Erlangen Phytocell included a spectral radiometric device 
described by Kaufmann and Hartmann (1990), a pyranometer, PAR-meter, UV-radiometer,and 
photometric analyses as described by Hartmann and Kaufmann (1990). Additionally, a digital 
luxmeter (Mavolux, Gossen) was used. All sensors had a cosin~ response. 

The temporal pulsations of the xenon emission were measured with the 
monochromator/photomultipier combination B, as described above, connected to a digital 
storage oscilloscope. 
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RESULTS AND DISCUSSION 

Spectral aspects 

The radiation penetrating the quartz envelope of a xenon lamp shows an almost flat part with 
little line structure in the visible range and a pronounced line structure in the IR spectrum 
(Figure 1). The short-wave limit at approx. 200 nm and the long-wave tail up to 2500 run 
(Kaufmann and Christensen 1984) were not included in our plant related investigations. They 
are described in the literature. The irradiance in the IR exceeds the irradiance of natural global 
IR radiation by an order of magnitude. The heat resulting from excess IR absorption by 
biological tissues will lead to rapid destruction. Excess short-wave UV radiation will also be 
deleterious to living systems. Xenon lighting, therefore, requires specially tailored filters 
which, protect living systems from these spectral irradiances. 

The criteria for filter selection are, however, not readily met by the available filter systems 
which, therefore, do not completely fit the experimental requirements for plant illumination. 
The criteria can be summarized as follows: 

A) Spectral balance. The excess radiation should be removed with negligible losses of the 
required useful radiation which is defined by an energetic and spectral balance close to natural 
conditions. 

B) Lon~ term stability. The mechanical and optical properties of the filter material should have 
a long-term stability which depends on scientific considerations, cost, and duration of an 
experiment. 

There are several glass or plastic filters transmitting at least part of the required radiation. 
Figures 2 and 3 show typical results of such glass filtered xenon radiation. The first system 
employs IR absorbing glass (KG1, Schott), the other systems make use of glass with a heat 
reflecting coating. All systems eliminate most or all of the short wave UV radiation and 
provide a good transmittance in the visible range (Schott filter 112 and 113). The KGl glass, 
which exhibits a UV -B transmission superior to the other filters, shows an increasing IR 
absorption with an increasing wavelength. In order to remove the absorbed energy an effective 
cooling by air or water is necessary. In the case of heat reflecting layers IR is reflected to 
other materials from which heat can be removed more readily than from glass. The main 
purpose of all these filters is the eliminiation of the strong peakS in the near IR. Besides glass 
filters water is known as a good heat absorbant. Since water filters need a container, the 
spectral properties of both water and its containment have to be taken into account (Figure 4). 

Due to economic aspects large water layers rely on containment materials other than fused 
quartz. They do absorb a great deal of the UV radiation as already demonstrated in Figures 
2-4. The residual IR-absorption of water filters can be concluded from Figure 4, where the 
spectral transmittance of 2 cm and 20 cm glass contained water layers are compared. The 
absorption of water in the near IR (800-950 nm) is not very effective regardless of the layer 
thickness whereas longer wavelengths are readily absorbed. 
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Fig. I. Spectral irradiance of the unfiltered radiation of a long arc xenon lamp. The data are 
adjusted to 1940 Jlmol/(m2 s). The dotted line indicates the spectral irradiance of global radiation 
for a sun elevation of 60 degrees and an ozone value of 320 DU according to model calculations. 
Fig. la (top). Linear plot 
Fig. 1 b (bottom). Log plot. 
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Fig. 2. Spectral irradiance of xenon radiation, filtered by an IR absorbing Schott glass KG 1. 
Further explanation see Figure 1. 

With regard to our above stated criteria for filter properties we compare all presented filter 
systems applied to xenon light according to the spectral balance of the transmitted radiation. 
As reference for natural conditions the global radiation is calculated according to a model of 
Seckmeyer and Thiel (unpublished) based on data of Green (1983) for a 60 degree sun 
elevation, the approximate maximum available in Central Europe and an ozone column of 320 
Dobson units. For comparison the spectral irradiances obtained from calculated global 
radiation and differently filtered xenon radiation (Figure 1) are adjusted to an equal 
photosynthetic active radiation (PAR) of 1940 Jlmol m-2 s-1. Spectral subsets of the UV, the 
visible, and the IR ranges are presented in Table 1. The weighted visible and UV ranges. 
llIuminance and erythemal weighting according to CIE are added for comparison. 
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Fig. 4. Spectral irradiance of a xenon radiation, filtered by water contained in Tempax glass 
(Schott). 
Fig. 4a (top). Water layer of 2 cm 
Fig. 4b (bottom). Water layer of 20 cm. For further explanations see Figure 1. 

The data from Table 1 demonstrate that within the visible and photosynthetically effective 
spectral ranges a good approximation of integral values can be obtained by careful design of 
the filter system. However, the phytochrome effective far red range (around 730 run) seems to 
be not sufficiently available (KG 1 and 113) without accepting excess IR (filter 112 and water 
layers). Thus our first criteria to match the spectmm closely to .natural conditions may not be 
met fully. If excess IR is intolerable the far-red gap, caused by the transmission characteristic 
of the IR filters, can be filled by an independent ilTadiation system providing part of the 
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required phytochrome effective radiance separately from the xenon system. As long as excess 
IR is acceptable the best spectral balance is achieved by glass contained water layers of 
sufficient thickness. . 

TABLE 1: Spectral Irrandiances of Differently Filtered Xenon Lighting Systems in 
Percent of Global Radiation 

Solar 60° Xenon [percent of solar radiation] 
global radiation IR reflecting glass IR abs. Tempax + Water 
absolute unfiltered 112 113 KGl 2cm 20cm 

250-1350 nm 971 Wjm2 172 82 67 63 124 77 
250-280 nm - (0.31 Wjm2 ) - - - - -
280-320 om 3.0 Wjm2 167 <0.1 <0.1 64 17 17 
320-400 om 53.8 Wjm2 79 50 52 85 60 61 
600-700 om 132 Wjm2 108 107 100 96 112 III 
700-800 nm 104 Wjm2 98 61 28 49 93 68 
800-900 nm 85.6 Wjm2 500 124 42 75 450 228 
900-1000 nm 53.3 W/m2 920 189 88 36 440 63 
Erythema 3.35 MEDjh 585 4 4 150 30 31 
D1uminance 109 klux 96 98 103 102 96 97 

The spectra were normalized to 1940 I'moJf(m2.s) of PAR and related to the respective spectral range of 
the global radiation. The resulting percentages of the spectral ranges are in bold figures if the deviation 
from the global radiation is more than 50%. 

The accumulated spectral irradiances of Table 1 reveal a good elimination of the excess short 
wave UV range by all filter systems. Most filters except of the KG1 glass do not only 
eliminate the UVC range but also the UVB range which may be essential for many plant 
responses. Taking into account the continuous shift of the UV absorbance which results from 
glass ageing by short-wave UV irradiation, long term stability of the UVB irradiance cannot 
be achieved by current irradiation techniques (Dohring et al. 1994). Hence, the second criteria 
for photobiological experiments cannot be met sufficiently for this spectral range. The best 
choice in our opinion is cutting off the UV range < 320 nm from the xenon lamp irradiation 
and supplementing the UVB range if necessary by an independent irradiation system 
(Seckmeyer and Payer 1993). 

Temporal Variations of Xenon Li~ht 

The optical output of an electrical lamp is correlated to the frequency of zero crossing 
(100/120 per second) of the applied AC voltage (50/60 Hz) (Figure 5). In the case of 
incandescent lamps, quartz halogene lamps included, the light oscillations are strongly damped 
due to the heat capacity of the tungsten filament. These lamps do not completly extinguish 
during each zero crossing of the applied voltage and the optical ripple is, therefore, small. 
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The plasma of a xenon discharge can follow much more rapidly to the instantaneous change of 
the input voltage. This is the reason why xenon flash tubes have such a firm standing in flash 
photography and time resolved experiments down to the microsecond range. 

Xenon lamps connected to AC power systems do have a pronounced flicker even if not 
visually perceptable. Figure Sa shows an oscilloscope recording of the 100 Hz pulsations of a 
4500 W xenon long arc lamp. The ratio between maximum and mean irradiance is approx. 2 
and is much higher during the ignition transient. 
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Fig. S. Light ripple of an AC operated xenon lamp under different modes of operation 
Fig. 5a (top). Single phase operation without phase control Imax/lmean = 2. 
Fig. Sb (middle). Single phase operation with phase control (solid line), Imax/lmean = S. The 
dotted line shows schematically the phase control of the applied AC power. 
Fig. 5c (bottom). Three phase operation with phase control (large ripple) and without phase 
control (low ripple). Imax/lmean = 1.7 and 1.1 respectively. 
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An electronic phase control, as it is used for continuous dimming of the lamp output even 
increases the maximum to mean ratio to more than 5 (Figure 5b). This electronic device 
switches on a certain variable portion of each half period of the input sine voltage (Figure 5b). 
The light output of the xenon lamp virtually mirrors the electrical input power resulting in a 
strong ripple. 

Neither AC powered lamps nor lamps operated with phase controlled voltage showed any 
significant spectral dependence of the lamp output. This is not surprising, as in either case 
lamps are operated at rather moderate current densities « 100 A/cm2

). Dramatic spectral 
changes in xenon discharges, mainly an increase of irradiance in the blue, can only be 
expected at current densities well above 1000 A/cm2 (Goncz and Newell 1966). 

Thus, the temporal analysis shows that in both types of operation modes a biological system is 
subject to a strongly varying irradiance. The oscillation contrast and the duration and 
frequence of the dark periods are approximately of the same magnitude as Kok had found to be 
effective during his flash light studies on photosynthesis (Kok et al. 1959, Seckmeyer and 
Payer 1988). As a consequence xenon lamps should be ideally driven by direct current. This 
mode, however, results in a reduced lifetime as compared to AC driven xenon lamps. The 
pulsations of AC powered lamp systems can also be drastically reduced by operating three 
lamps (or a multiple thereof) on a three phase mains system. This mode of operation results in 
a very steady luminous flux (Figure 5c). Damping is, however, hardly achieved if the lamps 
are phase controlled (Figure 5). 

Economical Aspects 

Although the economy of plant lighting depends very much on the purpose and conditions of 
application (Meyer and Nienhuis 1988, Neumann 1977, Kauer and Schedler 1986) some 
aspects have to be discussed in order to judge the value of xenon lamps. Four main criteria 
listed in Table 2 pay regard to the different lamp properties: Lifetime, luminous efficiency 
(defined as the ratio between luminous flux and the electrical power input), luminance, and 
spectral properties. All efforts of lighting technology right from its invention in the last 
century were put into these four aspects. 

Lifetimes of xenon lamps which vary from 50 to 3000 hrs have to be well considered under 
economical aspects. Most other lamp types, particularly those of a high luminous efficiency 
provide much longer life times. 

Metal halide lamps have with regard to the luminous efficiency an advantage of a factor 4 as 
compared to long arc xenon lamps (Table 2). This also holds approximately for the PAR 
region. The main reason is the strong excess IR of xenon radiation. However, it must be 
considered that metal halide lighting requires several additional measures, e.g. supplemental 
quartz halogen lamps, to adjust the spectral region to plant requirements. These additional 
measures reduce the advantage to a factor 2 to 3. This estimation agrees well with our 
comparative measurements of illuminance and total irradiance performed in the Erlangen 
Phytocell chambers with xenon lighting and in the GSF sun simulator, equipped with metal 
halide and other lamps (Seckmeyer and Payer 1993). As the IR output of metal halide lamps is 
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much lower, an effective heat control can be achieved by economic glass or water filters. 
Xenon lamps require more sophisticated and expensive systems of optical filters and cooling 
techniques to remove the strong excess IR energy. 

TABLE 2: Efficiency of Some Common Light Sources 

lifetime luminous luminous flux spectral properties 

efficiency and color temperature 
[h] [Im/W]* [1000 1m] 

Carbon filaments (Edison) 300 2 0.100 continuous,2000 K 
Tungsten double coil 1000 13 1 continuous, 2800 K 
Quartz-halogen incandescent 2000 40 40 black body, 3300 K 
Hg fluorescent low pressure 10000 95 16 oligochrome 
Hg high pressure 8000 60 5000 oligochrome 

Me-halide 5000 105 1200 polychrome, 6000 K 
Na-Iow pressure 10000 220 200 monochrome 
N a-high pressure 14000 130 130 oligochrome 
Xe short-arc (XBO) 2000 50 1500 
Xe long-arc (XQO) 3000 25 500 continuous + 
Xe long-arc max .. ? 30 4000 polychrome, > 6000K 
Xe long-arc (XBF) water cooled 1000 34 225 

*Lumillous efficiency is defined as luminous flux related to the total electrical power input 

Despite the relatively low lighting efficiency xenon arcs reach highest artificial luminance 
concentrated to a single lamp and compare in this respect best with sunlight. Therefore, xenon 
lamps are unique, for instance, as a light source of projectors and monochromator systems. 
Furthermore, xenon lamps do practically not need a warming-up time but the full illuminance 
is available immediately. 

Although the economy of lighting is mainly based on the sensitivity of the human eye, this 
evaluation holds roughly true for plant requirements, too. Spectral aspects seem to deserve 
highest priority for both visual and botanical applications. For instance, lamps with a few lines 
are not sufficiently balanced to meet the photobiological requirements of plants but may be 
sufficient to support growth and to illuminate technical objects at low cost. Only xenon lamps 
and some metal halide lamps provide a spectral distribution which is comparable to sunlight. 
The advantage of metal halide lamps is their economical adaptability to biological applications, 
while xenon lamps provide an almost constant smooth spectral putput close to sunlight over a 
wide range of power. If, for particular plant experiments, spectral variations are needed this 
can only be achieved by a sophisticated combination of several lamp types which can be 
operated individually (Payer et al. 1993). 

CONCLUSIONS 

The high luminous flux and spectral properties of xenon lamps would provide an ideal 
luminairy for plant lighting if not excess IR radiation poses several problems for an 
application: the required filter systems reduce the irradiance at spectral regions of particular 
importance for plant development. Most of the economical drawbacks of xenon lamps are 

240 



related to the difficult handling of that excess IR energy. Furthermore, the temporal 
variationof the xenon output depending on the oscillations of the applied AC voltage has to be 
considered for the plant development. However, xenon lamps outperform other lighting 
systems with respect to spectral stability, immediate response, and maximum luminance. 
Therefore, despite considerable competition by other lighting techniques, xenon lamps 
provide a very useful tool for special purposes. In plant lighting however, they seem to playa 
less important role as other lamp and lighting developments can meet these particular 
requirements at lower costs. 
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EFFICIENT, FULL-SPECTRUM, LONG-LIVED, NON-TOXIC MICROWAVE LAMP 
FOR PLANT GROWTH · 

Donald A. MacLennan, Brian P. Turner, James T. Dolan, Michael G. Ury, and Paul Gustafson 

Fusion Systems Corporation, 7600 Standish Place,Rockville, MD 20855 

INTRODUCTION 

Fusion Systems Corporation has developed a mercury-free, low infra-red, efficient microwave 
lamp using a benign sulfur based fill optimized for visible light. Our literature search and 
discussions with researchers directed us to enhance the bulbs red output. We have demonstrated 
a photosynthetic efficacy of over 2 micro-moles per microwave joule which corresponds to over 
1.3 micro-moles per joule at the power main. Recent work has shown we can make additional 
increases in overall system efficiency. During the next two years, we expect to demonstrate a 
system capable of producing more than 1.5 micro-moles/joule measured at the power main with 
significantly less IR than alternative lamp systems. 

BACKGROUND 

The results described are from NASA SBIR· funded work. We determined optimal plant growth 
light requirements via a literature search and researcher input. We surveyed candidate lamp fill 
materials to be used in combination with sulfur and explored several methods of increasing 
photosynthetic efficacy. Following is a description of the lamp's potential and the work done 
without disclosing proprietary information. 

Advantages of Sulfur Lamp Technology 

Why sulfur lamp technology? The sulfur bulb technology stems from 22 years of research and 
development work on microwave powered mercury based electrodeless light sources at Fusion. 
We summarize the properties of this new electrodeless sulfur light source: 

• Spectral 
Stability 

• Long Life 

Non-reactive fill materials and the absence of 
electrodes lead to lamps with virtually no shift in spectrum over their life. 

Life tested to nearly 10,000 hours. No evident failure mode internal to the 
lamp envelope discovered to date ("infinite" bulb life). System life is now 
limited by magnetrons which with development could be doubled to 
20,000 hours or more. 

·Based on work supported by NASASmall Business Innovation Research (SBIR) Phase I Contract 
NASI0-11978. 
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Efficacy 
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The source has been tested at above 2 micro-moles per microwave 
joule, bare bulb". We expect improvements from this value. 

There are no large spikes in the spectral distribution. See Figure 1. 
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Fig. 1. Spectral Irradiance of 6700 0 CCT bulb (upper solid curve) with solar spectra 
(discrete points -- CIE Pub. 85, Table II). Lower curves are scotopic and photopic 
eye responses for comparison only. 

Fill Gas 

Excellent 
Mainten
ance 

Stops/ 
Starts 

The bulb is non-toxic, mercury-free, and safe --low pressure when not 
operating. 

We estimate bulb light output at 10,000 hours will be 95 percent 
of initial output. This is referred to as "maintenance." 

Stops and starts do not affect an electrodeless bulb's lifetime. As an 
example, comparable Fusion UV bulbs are warranted for 100,000 cycles 
and have achieved 400,000 in tests. 

°Bare bulb means the output measured using bulb input power without ballast or fixture losses 
included. This method of expressing efficacy is usual within the lighting industry. Unless otherwise 
stated we will use efficacy at the power main to mean bare bulb with ballast, but without a lamp 
fixture (reflector, etc.) 
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Rapid 
Start 

Operating 
Range 

LowUV 
andIR 

Cold start is significantly shorter than conventional HID lamps. 

Packages in the range 2,000 to 6,000 micro-moles per meter squared 
per second of PAR are potentially practical. 

See Figure 2. We expect to make further improvements 

62%UV+IR 

63.6% 
38% 

". 

Cool White Flourescent HPS (Air Cooled) 

~8.8% 
HPS (Water cooled) 

31.5% UV +IR 

~ 
68.5% 

Microwave Sulfur 

Fig. 2. 400 to 800 nm radiation versus UV + IR radiation (percent power output) or 
various lamps. From data adapted from Both et. al. (1994). 

Sulfur Electrodeless Lamp Technology Overview 

Like all HID lamps, visible light from sulfur bulbs comes from a hot gas or plasma within a 
transparent envelope or bulb. The plasma is heated in conventional lamps by a current between 
special metal electrodes. These electrodes can be a significant deleterious factor for bulb life and 
maintenance of output. The sulfur bulb's plasma is heated by microwave energy interacting with the 
material within a quartz spherical bulb -- no electrodes. The sulfur bulb is extremely simple in 
concept, just a quartz envelope, noble gas, and sulfur. These materials do not react with each other. 
See Figure 3 . To this mixture, we have added other materials on a trial basis. This simplicity and the 
absence of chemical reactions is the reason for the sulfur bulb's long-life and excellent output 
maintenance. 
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Fig. 3. Microwave Electrodeless Quartz Sulfur Bulb. 

Noble Gas 

The microwave energy for the sulfur bulb is generated by a magnetron, similar if not identical to 
those found in microwave ovens. The magnetron is powered by direct current electricity from a 
power supply, which receives its energy from the alternating current electrical power mains. Figure 4 
is a schematic of the lamp. Not shown in the figure is the magnetron to bulb coupling means. 

AC 

Microwave 

DC 

Magnetron 

Power Supply 
Fig. 4. Microwave Electrodeless Lamp Schematic. 

Figure 5 is a cross-section of a lamp head showing the microwave coupling to the bulb. Surrounding 
the bulb is a microwave containment screen and outside the screen is a reflector. 
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Fig. 5. Microwave Electrodeless Lamp showing Bulb Coupling. 

A recent and complete review of RF and microwave electrodeless lamps for lighting with an 
extensive citation list was authored by Wharmby (1993). The basic paper on the sulfur lamp 
technology was presented by Dolan et al. (1992). 

Potential Applications 

Commercial applications for Fusion's plant growth lighting innovation are in three areas: 
experimental plant growth chambers, enclosed artificially-lighted plant growth factories, and 
supplementary early season lighting for commercial nurseries and farms. Spectrum, efficacy, 
cost, life, and infra-red content are key factors which will detennine market success. Each 
market area weights the factors differently. 

Experimental plant growth chambers. Plant growth chambers are essentially sophisticated, 
lighted, walk-in refrigerators designed to maintain a constant temperature and humidity. Control 
of carbon dioxide and other gases can be important. Low infra-red emission, output and 
wavelength stability, and adequate photosynthetic radiation are key criteria to plant growth 
researchers. Lamp life, efficacy, and cost are less important. We have found an improved 
spectra would be welcome by researchers. 

Experimental growth chambers are used at colleges and universities, bio-technology firms, in 
government, and research laboratories. 

Enclosed artificially-lighted plant growth factories. Phytofarms of America may be the only US 
firm to grow lettuce and other greens hydroponically totally under artificial light commercially 
(water cooled high pressure sodium) in the US for a period of time. See Field (1988). 
Phytofarms is no longer operating. One critical factor in shutting down was the cost of 
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electricity. For artificially lighted plant growth factories, the cost per quanta delivered to the 
plant is the most critical factor. At the present time no source appears to have the efficacy to 
allow plant growth factories to flourish in the US. Apparently such growth farms are successful 
in Japan. Low infra-red content and cost per unit dry weight grown are key factors in this 
market. 

Supplementruy early season lighting. The largest near term potential market is supplementary 
lighting for early season plant growth. In this market, initial cost of equipment and operating 
costs are primary. High pressure sodium has adequate spectra and initial and operating costs for 
many situations. According to a limited sample of commercial growers, infra-red from high 
pressure sodium lamps is not a problem and may be helpful as the supplementary lighting helps 
keep the ground warm during December through February. 

OPTIMAL PLANT GROWTH SPECTRA 

When starting this work, the authors decided to obtain input on the optimal plant growth spectra 
so lamp objectives could be properly set. We choose to do this by examining the literature and 
talking with key plant growth researchers. 

Summruy 

Our literature search and researchers' comments-suggest an optimal plant growth spectral energy 
distribution for photosynthesis and most photomorphogenic processes: 10% of the energy in the 
blue region of the spectrum, preferably at about 440 to 460 nanometers, and 90% of the energy 
in the red region of the spectrum with approximately 75% in the region between 600 and 700 
nanometers, and less than 25% of the red energy in the far-red from 700 to 800 nanometers. UV 
radiation below 360 nanometers wavelength has been shown to have deleterious affects on plant 
morphology, and infrared radiation past 800 nanometers doesn't contribute to plant growth and 
can be harmful at high levels (McCree 1984). 

We also learned photosynthetic radiation, the number of photons between 400 and 700 
nanometers, expressed in micro-moles, is a good initial metric for the output of plant growth 
bulbs. This metric is simple, widely used, and sufficiently close to the well known McCree 
(1972) relative quantum yield curve as to be quite useful. 

Researcher Comments 

The total energy of the radiation input to the plants has two separate criteria, where for most 
plants (except wheat and certain other seed grasses), a "blue" energy input of30 to 35 micro
moles per meter squared per second has been suggested as the minimum needed for decent plant 
growth, and 70 to 75 micro-moles M-2 sec-I has demonstrated better performance (Sager). Total 
energy has been postulated as optimized at approximately 600 micro-moles M-2 sec-I. By 
controlling the total energy output to that level, direct comparisons can be made between the 

-Researchers supplying comments are listed following references. 
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Fusion visible system and fluorescent, metal halide and high pressure sodium lamps. The reason 
is fluorescent lamps are limited to approximately that range and many researchers have 
concluded plant growth performance for fluorescent illuminated systems is acceptable (Downs). 

There were also some comments from researchers as to the reasoning they used in selecting a 
particular spectral distribution. Robert J. Downs said the residual radiation energy following 
transmission through a single soybean leaf is almost completely quenched below 700 
nanometers, thus indicating the green and blue radiation is absorbed or reflected by the topmost 
leaves in the foliage. Thus in order to get sufficient leaf mass, red radiation between 600 and 
800 nanometers is very important, as only that radiation contributes to photosynthesis in the 
leaves below the top-cover foliage. 

Downs also expressed the opinion the Fusion spectrum of Figure 1 is too blue. A flatter 
distribution would be better. 

Frank Salisbury suggested the [sulfur] spectra would be considered "ideal" as it presently exists 
for researchers working in the areas of plant environmental and pollution research, as the 
researchers would be able to model solar equivalent response and have the ability to rapidly 
study such topics as ozone depletion, greenhouse gas effects, volatile hydrocarbon pollution, 
acid rain effects and other environmental variables as well as their impact on plant growth, 
morphology and physiology. Salisbury also stated for many wheat-like plants, the red output 
from high pressure sodium works extremely well, and those types of plants seem to have little 
need or requirement for the 10% blue radiation as defined by other researchers. 

Theodore Tibbitts indicated a differing view. He suggested the bulk of the radiation would be 
most useful if the radiation distribution were partitioned into 10% in the blue near 450 
nanometers, and 90% in the region between 550 and 680 nanometers. He believes this would be 
an optimal spectra for nearly all commercial applications. He suggested the spectra would be 
best if it was strongly peaked near 600 nanometers with a rapid fall to zero above 800 
nanometers and below 300 nanometers. 

Two of Fusion's lamps are being used by the USDA, Climate Stress Laboratory by Dr. Steven J. 
Britz and his co-workers in plant growth studies. Dr. Britz, writes "I doubt that a single 
spectrum will be optimal under all conditions. Much will depend on the species or genetic 
variety being used." His general conclusion, however, is in line with other researchers -- 90 % 
of quanta in the red, 10 % in the blue. A key point in Britz's communication is " ... our interest in 
the [Fusion sulfur] lamp is based primarily on its ability to simulate sunlight more accurately 
with respect to spectral quality and irradiance ... " 

Tibbitts' note reminds us the photomorphology for most plants has a strong far-red response at 
approximately 730 nanometers, which is one of the themes of Kasper bauer's paper on 
phytochrome regulation (Kasperbauer 1992). With a strong control on radiation within the red 
and far-red, plant morphology can be highly regulated. Fusion's present spectral output for the 
sulfur bulb is slightly higher in the red to far-red ratio in comparison to solar radiation, which 
helps explain Britz's finding of a phytochrome photo equilibrium distribution of 0.76 for the 
sulfur bulb system as compared to 0.72 for solar radiation (Britz et al. 1994). Thus the present 
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spectra should have a tendency to have elevated growth of plant dry matter and a reduced 
photomorphological response, enabling the morphology to be controlled by addition of "far-red" 
light at approximately 730 nanometers. 

Galland's review (1992) can be regarded as a cautionary note for any assumptions or statements 
regarding previous blue-light research and plant physiology and photomorphology. 

At a meeting at Fusion Systems Corporation (June 4,1992), Jerry Deitzer pointed out the 
importance ofr~diation in the 700 to 800 nanometer region. He also stated " ... [for commercial 
growers] photons per watt is the key." At the same meeting, Robert Langhans suggested a key 
advantage of the Fusion lamp in plant growth chamber studies was the low amount of far 
infrared. 

CANDIDATE LAMP FILLS 

We examined a number of candidate lamp fills and designs. For our purpose here, we describe 
two. 

The fills which included Lil do show an additional red component. Typical is Figure 6. 
However, we have to pay a large price for the "increase" in the red. First, heat conduction losses 
hurt the efficiency due to the low weight (high conductivity) of lithium. Second, the iodine 
absorbs blue and green light. Lithium could be introduced into the fill via Li2S which has a 
reasonable vapor pressure, but heat conduction losses still remain a concern. We have not 
exhausted the work with lithium and are hopeful. 

O~~----.--r----r-.----r----~-.----.--.----r--r~~~ 
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Fig. 6. Sulfur/lithium in the range 400-700 namometers. The ordinate is 
proportional to the number of photons per second. 
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Sulfur with X, a proprietary material, is shown in Figure 7 compared with the sun. The most 
prominent novel characteristic of the bulb fill is the close match to the solar spectrum. The color 
stability of this lamp is excellent, and no external filtering is needed to match solar spectrum. 
While the photosynthetic efficacy of the source is good, it falls below other possible choices. 
See Table I. 
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Fig. 7. Sulfur plux X in (continuous line) compared with the sun (discrete 
points). The ordinate is proportional to the number of photons per second. 

RESULTS 

We first list our bare bulb results and then compare the best to a practical configuration. 

Bare Bulb Results 

We tested several sulfur combinations (sulfur plus other materials) and alternative designs in an 
attempt to increase the red output and increase the photons available for photosynthesis. Table I 
summarizes a few of the different fill/designs tested and their bare bulb photosynthetic efficacy. 
Sulfur alone (lamp of Figure 1) is shown for comparison along with the theoretical maximum 
assuming a uniform distribution of photons between 400 and 700 nanometers. 
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TABLE 1 Photosynthetic Efficacy of Fusion Test Bulbs. 

Fill micro-molesfBUF Comments 
joule 

Standard comparison 1.75 First sulfur lamp system. 
bulb (sulfur + argon) 

Sulfur + LiI 1.01 Runs hot. 

Sulfur + X· + argon 1.41 Solar-like spectra. 

Sulfur + argon (modified Above 2.0 Will be subject of next 
design). NASA SBIR contract. 

Theory: Constant number 4.6 All energy in 400 to 700 
of photons per unit wave nrn band with photons 
length, 100% efficiency distributed uniformly, 

no other loss in system. 

*Proprietary material. Patent applied for. 

Practical Growth Chamber Results 

It should be kept in mind the efficacy values given in Table I are bare bulb numbers without 
light-directing fixtures, and do not include power supply losses. Actual values on plants will be 
significantly lower. With that in mind, we compare our numbers with the values published by 
Barta et al. (1992) in Table II, below. Barta et al. numbers reflect experience in "typical growth 
rooms and cabinets" and, as such, are lower than would be expected with bare lamps. We added 
the fourth line to reflect what might be expected from the 2 plus micro-mole per joule lamp of 
Table 1. 

TABLE 2 Data from Barta et at. (1992 ,abrid ed with added sulfur lam . 

Photosynthetic Radiation Source 

High Pressure Sodium (HPS) 

DH-TS GaAIAs LED 

Cool White Fluorescent 

Fusion sulfur lamp 
Efficacy> (2 X .65 X .70) * 

Electrical Efficacy 
(micro-moles/joule) at 

lant level 

1.00 - 1.52 

0.20 - 0.91 

0.13 - 0.75 

> 0.91 

* Efficacy> greater than 2 micro-moles times 0.65 power supply efficiency times 
0.70 fixture efficiency. 
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Discussion 

The high pressure sodium (HPS) values up to 1.52 of Table 2 seem high. Using the same 0.70 
fixture efficiency as above, a ballast efficiency of 0.88, and the conversion divider of 82 from 
Thimijan et al. (1983), we get for a 1000 watt HPS bulb: 

140 lumens per watt / 82 --> 1.71 micro-moles/joule new bare HPS bulb 
times 0.88 ballast efficacy 
times 0.70 fixture efficacy 
equals 1.05 micro-moles per joule for the HPS lamp at plant level. 

Actually, given the relative size of the sources, one would expect the sulfur lamp fixture to be of 
greater optical efficiency. Thus, we conclude the present sulfur lamp photosynthetic efficacy is 
nearly that of the HPS and note the sulfur lamp does not require water cooling. 

We expect additional improvement during our next NASA SBIR contract resulting in a system 
efficacy greater than HPS. 
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LIGHT EMITTING DIODES AS A PLANT LIGHTING SOURCE 

R. J. Bula,* D.l Tennessen, * R. C. Morrow,* and T.W. Tibbitts** 

*Wisconsin Center for Space Automation and Robotics, **Department of 
Horticulture, University of Wisconsin-Madison. Madison, WI 53705, U.S.A. 

INTRODUCTION 

Electroluminescence in solid materials is defined as the generation of light by the passage of an 
electric current through a body of solid material under an applied electric field. A specific type 
of electro luminescence, first noted by Lossew in 1923, involves the generation of photons when 
electrons are passed through a p-n junction of certain solid materials Gunction of an-type 
semiconductor, an electron donor, and a p-type semiconductor, an electron acceptor) (cited in 
Bergh and Dean, 1976). Development efforts to translate these observations into visible light 
emitting devices, however, was not undertaken until the 1950s. The term, light emitting diode 
(LEDs), was first used in a report by Wolfe, et aI., in 1955 (cited by Williams and Hall, 1978). 

The development of this light emitting semiconductor technology dates back less than 30 years. 
During this period of time, the LED has evolved from a rare and expensive light generating 
device to one of the most widely used electronic components. The most popular applications of 
the LED are as indicators or as optoelectronic switches. However, several recent advances in 
LED technology have made possible the utilization of LEDs for applications that require a high 
photon flux, such as for plant lighting in controlled environments. The new generation of LEDs 
based on a gallium aluminum arsenide (GaAIAS) semiconductor material fabricated as a double 
heterostructure on a transparent substrate has opened up many new applications for these LEDs 
(Cook et aI., 1987). 

CHARACTERISTICS AND PERFORMANCE 

The following desirable characteristics ofLEDs were listed by Williams and Hall, 1978: 

o Long life 
o Small size and weight 
o Ruggedness 
o Good temperature stability 
o Low drive voltage 
o Fast switching times 
o Low noise optical switches 
o Compatible with integrated circuits 
o Tailored wavelength of light emission 
o Cold light (minimum heating) 

It is obvious that a number of these characteristics are of considerable importance in selecting a 
light source for plant lighting in a controlled environment facility. Of particular importance is 
the characteristic that light is generated by an LED at a rate far greater than the corresponding 
thermal radiation predicted by the bulk temperature of the device as defined by Plank's radiation 
law. This is in sharp contrast to other light sources, such as an incandescent or high intensity 
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discharge lamp. This is not to imply that the LED does not heat up because not all electrons are 
converted into photons and such electrons are retained and result in increasing the temperature of 
the LED. 

Power Conversion (Quantum) Efficiency 

Since the quantum efficiency of many LEDs is in the range of 1 to 3 percent, it is not surprising 
that considerable skepticism prevails that an LED could be used for applications that require a 
high photon output. This is particularly true of many of the commercially available LEDs in the 
blue, green, yellow and orange region of the spectrum. However, the recently introduced red 
light emitting LEDs and the new blue light emitting LED exhibit much higher power conversion 
efficiencies. For example, external quantum efficiencies of some of the high output GaAIAs 
LED devices fabricated in the early stages of this technology development effort were reported 
to be around 18 percent at 3000 K and 50 percent at 900 K (Cook et, aI., 1987). It may be 
appropriate to point out that a significant number of photons generated by the LED are in fact 
reflected back into the device and never emitted outside the LED. Thus, internal quantum 
efficiencies are much higher and efforts have been made to reduce the difference between the 
internal and external quantum efficiencies normally found in most LEDs, which is basically an 
optical and materials problem. 

The quantum efficiency of the high output GaAIAs LED is dependent on several important 
considerations. A frequently overlooked factor is that the quality of the semiconductor alloy has 
a major impact on the external quantum efficiency of this device. Fabrication of the superthick 
GaAIAs layer having a transparent substrate with a high degree of consistency and reliability is 
difficult and expensive. Any compromise in these fabrication procedures results in an LED with 
low quantum efficiencies and output flux. Therefore, effective use of the GaAIAs LED as a 
plant lighting source is dependent on devices that are fabricated ip. such a way as to achieve the 
highest possible external quantum efficiencies. 

The temperature of a p-n junction of a diode is a function of input power, ambient temperature, 
heat sink efficiency, and operation mode (continuous or pulsed). Increases in the temperature of 
the p-n junction result in decreased internal quantum efficiencies (Fukuda, 1991). Therefore, 
external quantum efficiencies are inversely related to the device operating temperatures as 
reported by Barta, et al. 1992., and drive current shown in Figure 1 a and b. 

When being used as a plant lighting source, it is often desirable to operate LEDs at as high a 
forward current as possible to obtain a high photon flux. Since the LED p-n junction 
temperature increases in proportion to the drive cUlTent, removal of heat at the active layer of the 
LED is critical to maintaining LED performance. Unfortunately, the conductive heat transfer 
rate of the epoxy used for the encapsulation of typical commercially available LEDs is low. The 
relative power conversion of a typical GaAIAs LED decreases as the forward drive current is 
increased (Figure la). For example, at the manufacturers suggested maximum rating of 50 rnA 
of forward current, the relative power conversion (quantum efficiency) is approximately 75 
percent of that when the device is operated at a forward current of lOrnA. When the device is 
operated at 100 rnA forward current, the relative power conversion decreases to 55 percent of 
that when the device is operated at a forward current of lOrnA. Thus, increasing the forward 
drive current of a typical epoxy encapsulated LED increases the photon output but significantly 
reduces the quantum efficiency. 
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Fig. 1. Relative power conversion of a GaAIAs LED. with a peak emission at 670 nm (a) 
LED encapsulated in epoxy resin,(b) LED mounted on a proprietary heat dissipation 
device. (Data from Quantum Devices, Inc.) 

On the other hand, when the semiconductor material is mounted in a way that increases the 
conductive heat-transfer rate over that of an epoxy encapsulated LED, the power conversion 
when the LED is driven at 50 rnA of forward current is approximately 95 percent of that when 
the LED is driven at its maximum power conversion point of 30 rnA forward drive current 
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(Figure 1 b). Even at 100 rnA of forward drive current, the LED retains approximately 80 
percent of the maximum relative power conversion efficiency. These data clearly demonstrate 
that if the GaAIAs LED is to be used as a light source requiring a high photon flux, the 
semiconductor material must be mounted in such a way that the conductive heat-transfer rate 
maintains the LED at or near the ambient temperature of the environment in which it is 
operating. Maintaining the LED operating temperature as close as possible to that of normal 
room temperatures (~300° K) results in the added benefits of prolonging the life and maintaining 
the photon output during the life of the LED. The LED mounting approach used in the 
QBeam™ lighting system (Quantum Devices, Inc., Barneveld, WI 53507) utilizes high 
conductive heat-transfer mounting material which enables the light unit to generate a photon flux 
exceeding 2000 J,lmolm-2·s-1 • 

Spectral Composition of the Emitted Light 

The peak. wavelength of the light emitted by an LED is controlled by the composition of the 
semiconductor material ofthe LED, and to a much lesser extent by the operating temperature of 
the LED. Semiconductor materials are available that have peak. emissions ranging from the blue 
to the infra-red regions of the radiant energy spectrum, the spectral region of most interest for 
use in plant lighting. For example, the GaAIAs semiconductor can be fabricated so as to have a 
peak. emission over the spectral range of 630 to 930 nm. The most widely available GaAIAs 
LEDs exhibit a peak. wavelength around 660 nm with the spectral energy distribution as shown 
in Figure 2. An important point is that the peak. spectral output of the GaAIAs LED can be 
fabricated to coincide with the maximum absorption of chlorophyll in the red region of the 
spectrum. This is an obvious advantage of the LED as a plant lighting source compared to other 
currently used light sources. 

An LED that emits in the blue region of the spectrum is another important component of an LED 
plant lighting system to the extent that this radiant energy relates to photomorphogenic plant 
responses. The spectral energy distribution of a recently introduced blue light emitting LED is 
shown in Figure 3. The semiconductor material of this LED is reported to include alloys of 
GaN, InGaN, and AIGaN (Anon., 1994). The photon output of this blue light emitting LED is 
considerably less than that of the red light emitting LED but at least two orders of magnitude 
higher than any other commercially available blue light emitting LED. 
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Fig. 2. Spectral photon distribution of a gallium-aluminum-arsenide (GaAIAs) light 
emitting diode (LED) having a peak emission at ~660nm. 
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Fig. 3. Spectral photon distribution of a complex gallium-nitride (GaN, InGaN, AIGaN) 
light emitting diode (LED) having a peak emission at -445 nm. 

The LEDs that emit in the green, yellow, and orange region of the spectrum are based on GaAs, 
GaP, and/or GaAsP semiconductor materials. The spectral energy distribution of these LEDs 
varies, depending on the specific composition of the semiconductor. The photon output of these 
LEDs is rather low and consequently they are of questionable utility in a plant lighting system. 
Developmental efforts are in progress on these materials and it may be possible that LEDs 
emitting light in these spectral regions with a higher photon flux will be available in the future. 

259 



There is some interest, mostly outside the plant lighting area, in an LED that would emit "white" 
light. Any such LED would be based on fabrication techniques using multiple semiconductor 
materials, or chips, rather than one semiconductor material capable of emitting "white" light. 
Availability of the high output blue light emitting material should facilitate the fabrication of 
"white" light emitting LEDs at photon flux levels of 50 to 100 Jlmol"m-2·s-l

• 

PLANT RESPONSES 

A plant lighting system for controlled environments must provide plant.:; with an adequate flux of 
photosynthetically active radiation, plus providing photons in the spectral regions that are 
involved in the photomorphogenic and phototropic responses that result in nonnal plant growth 
and development. Use of light sources that emit photons over a broad spectral range generally 
meet these two lighting requirements. Since the LEDs emit over specific spectral regions, they 
must be carefully selected so that the levels of photsynthetically active and photomorphogenic 
and phototropic radiation meet these plant requirements. This does not imply, however, that the 
LED plant lighting system must provide photons over the entire spectral region of known plant 
response, namely 380 to 750 nm. 

Photosynthesis 

Conversion of electrical energy to light energy and the quantum requirement of photosynthesis 
of a given lamp, are the critical criteria for selection of a light source to provide the 
photosynthetically active radiation of a plant lighting system. Tennessen et al. (1994a), 
compared the photosynthetic rates of kudzu (Pueraria Zobala [Willd] Ohwi.) leaves when the 
photons were supplied by a xenon lamp or by LEDs with a peak emission in the range of 650 to 
664 nm (depending on the intensity of irradiation) over the range of 0 to 1400 Jlmol·m-2·s- l

• Their 
results show a typical photosynthetic response curve. At high levels of photon flux, above 300 
Jlmolm-2·s-l

, and ambient levels of carbon dioxide, the rate of photosynthesis was lower for the 
kudzu leaves irradiated by the LEDs compared to leaves irradiated by a xenon lamp (Figure 4). 
However, the photosynthetic response to light intensity was virtually identical for the two light 
sources when the measurements were made in at elevated levels of carbon dioxide, 175 Pa 
(Figure 5). These data reflect the potential limitation on photosynthesis by stomatal conductance 
at low levels of p CO2 related to stomatal response to red light which will be discussed later. 
Photosynthetic response of kudzu leaves to increasing concentrations of internal CO2 partial 
pressures and at a light intensity of 1000 Jlmolm-2·s- l

, was found by Tennessen et, al. (1994a) to 
be the same whether the photons were provided by a xenon arc lamp or LED lamps (Figure 6). 
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35 Pa. (Tennessen et, aI., 1994a). 
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Fig. 6. Net photosynthesis of kudzu leaves, as a percent of maximum, in response to 
various levels of internal CO2 pressure and 1 000 ~mol m-2s-1 of light from a xenon arc 
lamp (open symbols) and a light emitting diode (LED) with a peak emission at -660 nm 
(solid symbols). (Tennessen et, aI., 1994a). 

Tennessen, et aL (1 994b), have reported that photosynthesis of tomato (Lycopersicon esculentum 
Mill.) leaves in 2 kPa O2 (2 %) and 35 Pa CO2, was nearly linear within the photon flux range of 
o to 50 ~mol m-2·s-1 from LEDs with a maximum emission at 658 nm. The quantum requirement 
was 10.3 ± 0.6 mol photons mol-! carbon with LEDs having a peak emission at 658 nm, and was 
not statistically different from the quantum requirement using an LED light sources having peak 
emissions of 667 and 677 nm. The quantum requirement using an LED light source with a peak 
emission of 690 nm was 12.3 ± 0.6 and increased to 18.6 ± 0.6 with LEDs having a peak 
emission at 698 nm. As a comparison, tomato leaves irradiated with cool white fluorescent 
lamps exhibited a photon requirement of 12.0 ± 0.6 mol photons· mol-I carbon in 2 kPa O2 

(Figure 7). 

Also shown in Figure 7 are amounts of electrical energy required for the LED lamps having 
different peak emissions to produce a photon flux of 50 ~mol m-2·s- l

• The lowest amount of 
electrical power (m W) required to fix a ~mol of carbon was obtained using LEDs with peak 
emission in the range of 668 to 675 nm. These observations reflect the increased power 
conversion efficiency of the GaAIAs LED as the peak emission is increased over the range of 
650 to 800 nm. Obviously, photosynthesis is drastically reduced when the percentage of photons 
beyond 700 nm increases. 

These data clearly illustrate that the GaAIAs LED can be an effective source of 
photosynthetically active radiation. The quantum requirement and electrical energy required to 
fix a quantity of carbon is less for the LED lamp than for a cool-white fluorescent lamp. In 
addition, the LED lamps can be a very effective photon source for photosynthetic research to 
study electron transport, carbon metabolism. and trace gas emission. As technology 
improvements are made so that the discrete conventional LED is replaced by a monolithic array 
of diodes. LEDs will become a feasible plant lighting source for controlled environment plant 
growing facilities. 
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as affected by spectral quality of light provided by light emitting diodes (LEDs) (solid 
symbols) or by a cool-white fluorescent lamp at irradiance levels of 50 Jlmol m·2s- l

• 

Electrical conversion efficiency (open symbols) is calculated as mWJlmol carbon-I, based 
on the prod~ct ofmWJlmol photons-I and quantum requirement. (Tennessen et, aI., 
1994b). 

Pulsed Lighting 

The switching characteristics of LED are desirable for applications requiring pulsed light. The 
LED can be pulsed at frequencies as high as 100 MHz. We have measured near instantaneous 
irradiance levels of as much as 5000 Jlmol'm-2's-1 from LEDs pulsed at KHz frequencies. The 
LED is an ideal lighting device to study comparative photosynthetic rates under pulsed and 
continuous irradiation. There are indications in the literature that plants may more efficiently 
utilize light if it was provided to the leaf as an intense pulse rather than as a continuous flux. 
However, Tennessen et al.,(l994b), have observed that photosynthetic rates of tomato leaves 
were equivalent when the light was provided as a pulse of 5000 Jlmol"m-2's-1 when on 1 % of the 
time (1.5 JlS on and 148.5 Jl s off) compared with a continuous photon flux of 50 Jlmol'm-2's-1 

(Figure 8). All the comparative light treatments shown in Figure 8 provided the same level of 
photons integrated over an equivalent time period. Thus. electron transport of the photosynthetic 
apparatus appears to act as an integrator of photon flux pulses. The general observation that 
photosynthetic rates of leaves declines with increasing light levels appears to be a consequence 
of limitations from downstream reactions and not an inherent limitation of the primary 
photochemistry of electron transport as may have been previously hypothesized. 
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Fig. 8. Photosynthetic response of tomato leaves to increasing amounts of absorbed 
photons provided in pulsed segments of 1.5, 7.5, and 15 ~s during a cycle time of 150 ~s. 
The integrated photon flux of the pulse treatments were equal and the same as a 
continuous photon flux of 50 ~mol m·2s·\. (Tennessen et, aI., 1994a). 

Photomorphogenic Responses 

Radiant energy in the blue spectral region has been shown to affect the morphological 
characteristics of a number of plant organs. Early in the evaluation of the red light LEDs, it was 
observed that lettuce (Lactuca sativa L.) and other dicotyledonous plants developed excessive 
hypocotyl elongation, stem elongation, leaf extension, and reduced chlorophyll when grown 
under red light emitting LEDs as the sole source of irradiation. These abnormal morphological 
characteristics were eliminated and normal plant development occurred when light from the 
LEDs was supplemented with blue light from fluorescent lamps (Bula, et aI., 1991). 

Chlorophyll synthesis and chloroplast development appear to be affected when seedlings are 
grown under red light only. No critical data are available that provide an explanation of these 
observations or the impact these plant responses may have on seedling growth and development. 
These general observations indicate that supplementation of red light with a small quantity of 
blue photons would eliminate such effects and result in normal seedling development. 

Hypocotyl elongation of lettuce seedlings appears to be a very sensitive indicator of the amount 
of blue photons required to support normal photomorphogenic plant development. Using 
hypocotyl elongation as an indicator of plant response to the presence or absence of blue 
photons, Hoenecke, et aI. (1992), reported normal lettuce seedling hypocotyl development when 
the red light from LEDs was supplemented with more than 30 ~mol· 
m·2·s·\ of photons in the blue spectral region (Figure 9). The other interesting observation was 
that the hypocotyl elongation response was regulated by the flux of blue photons and not by the 
ratio of blue to red photons. 
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Fig. 9. Relationship between lettuce seedling hypocotyllength and flux of blue photons 
at two photosynthetic photon flux levels provided by light emitting diodes (LEDs) with a 
peak emission at -660 nm and fluorescent lamps having a 246 phosphor that emits 
photons primarily between 435 and 470 nm. the cool white fluorescent response was at 
an irradiance level of 150 J.1mol m·2s·1 (Hoenecke, et aI., 1992). 

Flowering and seed development of several species of plants grown under a combination of red 
light emitting LEDs supplemented with 30 J.1molom·2-g'1 of blue light were similar to plants grown 
under light from cool-white fluorescent lamps. Thus, normal plant growth and development can 
be expected with most, if not all, plant species when grown under red light emitting LEDs as the 
source of photons for photosynthesis and supplemented with a small quantity of blue photons to 
meet the photomorphogenic requirements involved in normal growth, development, and 
maturation. 

Stomatal Response 

The classical observation that stomates open in light and close in the dark is an over 
simplification of stomatal response as it relates to stomatal conductance of CO2 into the leaf. A 
number of internal and environmental conditions are involved in this critical plant response. 
From the standpoint of using red light emitting LEDs, Sharkey and Raschke, (1981), reported 
that stomatal opening was most responsive to light in the blue region of the spectrum, with a 
peak response being at approximately 450 to 460 nm (Figure 10): However, red photons provide 
sufficient signal for stomata to open so that the effects of low stomatal conductance under red 
light can only be overcome by increasing the concentration of CO2 to higher than ambient levels 
(Tennessen, et aI., 1994). We have recently determined that providing a low level of blue 
photons from blue light emitting LEDs increases stomatal conductance and has the same effect 
on photosynthetic rates as was the reported effect of high CO2 concentrations (unpublished data). 
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Fig. 10. Action spectrum of stomatal opening in the lower epidermis ofleaves of 
Xanthium strumarium, indicated as the inverse of the photon flux required to produce a 
conductance of 15 cmol·m-2·s- ' . (Sharkey and Rashke, 1981). 
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THE PHYSICS OF LIGHT DISTRIBUTION IN HOLLOW STRUCTURES 
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Department of Physics, University of British Columbia, 6224 Agricultural Road, Vancouver, 
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INTRODUCTION 

The purpose of this paper is to serve as an introduction, for non-physicists, to the subject oflight 
distribution in hollow structures. The motivation for light distribution is the importance of 
getting the maximum value from available light. We all recognize that photons cost money (one 
photon costs about $10-25 to make) so we obviously want to try to make the maximum number of 
photons for a given cost. What is often overlooked, however, is that these photons have the 
highest value only if they are delivered to the right place in the correct quantity. This means that 
there is often substantial economic value in the high quality distribution of light. This problem is 
discussed from a very general perspective, in order to show the role of general optical films for 
manipulating light. The underlying physics at work in such films is described, and examples of 
common optical light deistribution films are provided. 

THE DIFFICULTY OF LIGHT DISTRIBUTION 

One might expect that since light travels very rapidly and efficiently in air, light distribution 
should be an easy matter. Surprisingly, it is this very property of light which makes it so difficult 
to control. Light rays spread fast in all directions, and it requires sophisticated optical 
engineering to "contain" light in a desired region and "channel" it so that it has the desired 
distribution at the final destination. 

A different kind of problem results from the common opinion that light should be easy to 
understand, which probably arises because light is a visible part of our everyday lives. In 
reality, the behavior oflight is often non-intuitive and generally quite different from the 
impression we get from our human visual perception system. 

And not only is light confusing, but it is hard to measure as well! It is interesting to compare 
light to electricity in this regard. Although electricity is invisible, and unfamiliar to many of us, 
it is quite easy to measure. One can buy a voltmeter for about $100 that will measure a voltage 
to an accuracy of 1 part in 10,000. In contrast one must pay $1000 to buy an illuminance meter 
that can only measure to 1 part in 100. From this perspective, light is a thousand times harder to 
measure than electricity! 

A simple example shows one way that the subject of light distribution can be confusing. Fig. 1 
shows a device called an integrating sphere, which in this case is a hollow sphere with a white 
interior, containing at the center a light source which emits 10,000 lumens of light. The sphere 
interior area is 10 square meters, just to keep the numbers simple. It seems natural to estimate 
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that the luminous flux density, (that is, the illumimmce), at the inside surface of this sphere 
would be simply given by 

1= 1O,OOOlumens =l,OOOlux 
10m 2 (1) 

In reality, there is a correction required due to the reflectivity of the inside surface of the sphere. 
In Fig. 1, the sphere interior has a surface reflectivity of 0.9, and this increases the illuminance at 
the interior of the sphere, because the light undergoes several reflections before being absorbed. 
In fact the actual illuminance is not even close to the above guess. It is actually 10 times larger, 
since the average light ray reflects 10 times! This is just one example out of many cases in 
which the behavior of light rays, while basically simple, is nevertheless non-intuitive. 

Fig. 1 

A HIERARCHICAL VIEW OF LIGHT DISTR:.IBUTION 

Fig. 2 is a general depiction of the light distribution problem. There is a structure filled 
predominantly with air, into which light is made available from either the sun or an artificial light 
source. The structure contains general surfaces which will be called "optical films" in the rest of 
this paper. These films interact with light rays, to guide them toward a "target" which represents 
the region where the light is wanted for some purpose. 

"optical 
- air - film" 

Fig. 2 
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It is helpful to view this situation on three hierarchical levels. The highest level is that shown in 
Fig. 2, and in more detail in Fig. 3, in which an example light ray undergoes numerous 
interactions with a variety of optical surfaces of arbitrary shape and optical characteristics. The 
circle in Fig. 3 shows an area of an optical surface which is small enough that the surface appears 
essentially flat within this circle, but which is large relative to the detailed structure of the surface 
itself. Typically, this circle might be a few millimeters in diameter. 

area of magnification 

Fig. 3 

Fig. 4 is a magnified view of the circle of Fig. 3, and represents the second hierarchical level of 
analysis. At this level, the optical surface can be seen in general to be a complex structure which 
interacts with light. The optical film contains interfaces between different media, and the optical 
behavior of the film is result of the light transmission properties of these media and the shape of 
the interfaces. Usually the behavior of the media are simple and the shape is complicated. At this 
level, the behavior of light is highly complex and non-intuitive. 

Fig. 4 
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Before moving on, it is important to note that this description of an optical film is very general. 
For example, it applies to all surfaces one might find in a room, outdoors, in a light fixture, and 
almost anywhere else. 

The circle in Fig. 4 represents a view of a single optical interface in an optical film. The circle is 
small enough that the interface appears flat, but is large compared to a wavelength of light, so 
that it still makes sense to talk about light rays which travel in straight lines. For example, the 
diameter of this circle might be a bit less than a tenth of a millimeter. 

Fig. 5 represents a magnified view of the circle in Fig. 4; this is the lowest level of the 
hierarchical analysis, and it is pleasing to find, as described below, that the behavior of light at 
this level is simple indeed. 

Fig. 5 

THREE BASIC INTERACTIONS BETWEEN LIGHT AND MATTER 

There are really just three cases one needs to understand, two involving interfaces, and one 
involving bulk transmission. Fig. 5 depicts one of the two interface cases, namely the interface 
between one dielectric material and another. The term dielectric basically means a material 
which is not metal and which is therefore quite clear at this size scale. Examples include glass, 
plastics, water, and air. For the purpose of this discussion, such non-metallic materials can be 
characterized by a number called the refractive index, usually denoted n. In the case of Fig. 5, 
the interface is between dielectric materials having different refractive index values of n l and n2• 

An original light ray has an intensity Ii when it hits the interface, and as shown, some of the light 
energy reflects with intensity I" and some of the light energy is transmitted with intensity It. 
There are exact formulas that describe the relative intensity of the reflected and transmitted rays. 
but these are not needed in this discussion. The main thing that is important here is that there is 
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no energy loss at this interface. Another way of saying this is that: 

(2) 

Usually, the reflected ray of Fig. 5 is much less intense than the transmitted ray. For example, 
this is the reason that we can see easily through a window, (although a slight reflection is also 
noticeable). However it is interesting to note that for some situations the reflected ray can be 
intense and the transmitted ray can be weak. In fact there is special case known as total internal 
reflection, in which there is no transmitted energy at all, and all of the light energy is reflected. 
This phenomenon is used in optical fibres, and also in certain hollow light guides, as will be 
discussed at the end of this paper. 

Fig. 6 is on the same size scale as Fig. 5, and shows the second important interface case. This is 
the case of an interface between a dielectric material and a metal. At the size scale of Fig. 6 light 
travels a negligible distance in metal, and therefore only a reflected ray leaves the interface. The 
intensity of the reflected ray is given by the following formula: 

(3) 

where R is the reflectivity of the metal surface. The one really important thing about this case is 
that R can never be 1. That is, the reflected ray is always less intense than the incident ray, with 
the difference representing energy which is absorbed by the metal. R typically ranges from .7 to 
.95, and this means that any light distribution system in which light reflects off metal many times 
will be intrinsically inefficient. Incidentally, such dielectric/metal interfaces are common in 
everyday life - they are found in mirrors, and also on the surface of shiny metal objects. 

dielectric 

metal 

Fig. 6 
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Fig. 7 depicts the third important interaction between light and matter - the absorption of light as 
it travels through a dielectric medium. As mentioned earlier, the actual interface between two 
dielectric media is not absorptive. (The reason for this is that the interface itselfhas virtually 
zero thickness). However as a light ray travels through a dielectric material, some energy is 
absorbed. The fraction of energy lost per unit length is called the absorption coefficient, k. In 
solids, k can vary from as high as 10,000,000 per metre to as low as .01 per metre in certain 
materials, and is much lower in air. Also some materials may have dramatically different 
absorption coefficients for different wavelengths of light. It is this phenomenon which gives rise 
to color in optical surfaces. 

The three phenomena described above - reflection/transmission at a dielectric/dielectric 
interface, incomplete reflection at a dielectric/metal interface, and absorption during transmission 
through a dielectric - are all that is necessary to understand the optical characteristics of the 
surfaces which are normally used in the controlled. distribution of light. Of course applying 
these simple principles in order to determine the optical behavior of a given optical surface can 
be complicated, but is good to know that underlying the complexity is some simple physics. 

Rather than theoretically predicting the behavior of an optical film, we often take a shortcut by 
going back to the second level of the hierarchy, and experimentally observing the optical 
behavior of a given film, as represented in Fig. 8. We can summarize the behavior of a film by 
describing the distribution of reflected and transmitted light intensity for any given direction of 
incident ray. This information is just a big data file for a computer to use to model the travel of 
light rays at the highest hierarchical level where we began. 

1 - I -kx - oe 

absorptive medium 

Fig. 7 Fig. 8 
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EXAMPLES OF OPTICAL FILMS USED IN LIGHT DISTRIBUTION 

The rest of this paper presents examples of common optical surface used in light distribution. 
The first, shown in Fig. 9, is a white surface such as paint, paper, cloth, snow, milk, etc. Such 
white materials consist entirely of dielectric/dielectric interfaces, usually formed by high 
refractive index particles or fibres in a matrix of low refractive index material, such as air or 
plastic. Each time a light ray interacts with such a particle, it is reflected or transmitted in a 
different direction than the incident one. The result is a "random walk" for the light ray, which 
results in most of the light energy re-emitting from the surface it entered originally. It is 
important to note that the ray is re-emitted with a random direction, independent of the incident 
ray direction, which can be useful, or undesirable, depending on the situation. White paints are 
usually not highly efficient - typical reflectivities are in the 70 to 80 percent range, but some 
special paints can exceed 90 percent. By the way, if the bulk absorptivity of the particles or of 
the matrix is wavelength dependent, the result is colored paint. 

Fig. 9 

high index 
particles 

diffuse 
reflection 

low index 
matrix 

Fig. 10 shows a useful film for reflecting light in a specular manner. Specular reflection means 
that the reflected ray travels in the same direction as the incident ray, except that the component 
of travel in the direction perpendicular to the surface is reversed. Such metalized films generally 
consist of a smooth substrate, such as polyester film, coated with a thin layer of metal, such as 
aluminum or silver, and further coated with a transparent cover to keep the metal smooth and to 
protect it from corrosion. Such films are very useful in some light guiding applications, but they 
suffer from the disadvantage of absorbing from 5 to 20 percent of the light with each reflection. 

Fig. 10 

specular metal 
film 

- substrate -
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Fig. 11 shows a fairly new and useful kind of gene:ral optical film, known as a textured dielectric 
film. The specific example shown in Fig. 11 is called Fresnel lens film. It consists of a thin 
dielectric sheet (often acrylic or polycarbonate resin), in which one or more of the surfaces has a 
prismatic structure which causes light to change direction. Such surfaces can obviously have a 
wide variety of shapes, and they can therefore do a variety of interesting things to the reflection 
and transmission characteristics of the film. Importantly, the dielectric material can be very non
absorptive. As a result such films reflect and/or transmit almost all incident energy, with 
virtually none lost to absorption. 

Fresnel lens film 

Fig. 11 

Obviously there is a huge variety of such films, but in the interest of brevity, only one other 
example will be shown here, in Fig. 12. This film, known as prism light guide wall material, is 
very useful in light distribution. It has one flat surface, and one textured surface consisting of an 
array of linear right angle prisms inclined at 45 degrees to the flat surface. As shown, these 
prisms can reflect light by two total internal reflection steps, so the light is redirected back out of 
the surface from which it entered. Here we have a way for a film to reflect light much like a 
metal film, but without absorption. 

prism ligh t guide film 

- dielectic -

total inteITLal reflection 

Fig. 12 
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This provides an important answer to the problem of channeling light in hollow structures with 
high efficiency. Fig. 13 shows a prism light guide - a tube whose walls are fonned of prism light 
guide film, so that light rays entering one end can be piped down toward the other end. 

Fig. 13 

CONCLUSION 

By combining the prism light guide concept with the other kinds of optical films described 
above, it is possible to produce a wide variety of practical light distribution arrangement, on the 
highest level of the hierarchy where this paper began. Such arrangements are discussed 
elsewhere in detail; the intent of this paper has been to provide a greater familiarity with the 
underlying physics behind such work. 
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COMPARISONS OF LUMINAIRES: EFFICACIES AND SYSTEM DESIGN 

L.D. Albright and A.J. Both 

Department of Agricultural and Biological Engineering, Riley-Robb Hall, Cornell University, 
Ithaca, NY 14853-5701, U.S.A. 

INTRODUCTION 

Lighting designs for architectural ( aesthetic) purposes, vision and safety, and plant growth have 
many features in common but several crucial ones that are not. The human eye is very sensitive 
to the color (wavelength) oflight, whereas plants are less so. There are morphological reactions, 
particularly to the red and blue portions of the light spectrum but, in general, plants appear to 
accept and use light for photosynthesis everywhere over the PAR region of the spectrum. In 
contrast, the human eye interprets light intensity on a logarithmic scale, making people insen
sitive to significant differences of light intensity. As a rough rule, light intensity must change by 
30 to 50% for the human eye to recognize the difference. Plants respond much more linearly to 
light energy, at least at intensities below photosynthetic saturation. Thus, intensity differences 
not noticeable to the human eye can have significant effects on total plant growth and yield, and 
crop timing. These factors make luminaire selection and lighting system design particularly im
portant when designing supplemental lighting systems for plant growth. 

Light from a source (lamp) in a controlled environment chamber, or greenhouse, follows many 
paths to a plant; not all are direct. Light leaves a lamp in nearly every direction. Luminaire 
reflectors are designed to redirect much of the light from the lamp into a (more or less) single 
direction while avoiding redirecting light energy back through the lamp itself However, not all 
radiation that leaves a luminaire strikes the plant canopy directly. That part of the light that 
initially strikes walls and other surfaces within the lighted space should ideally be reflected 
totally, and re-reflected until intercepted by the plant canopy. That is the ideal. The ideal is 
never completely realized. Further, from the perspective of the plant canopy, irradiance is from 
several or many luminaires. Light from multiple sources, even if primarily direct from each, is 
perceived as an essentially diffuse light environment to the receiver. 

Light reflection within a luminaire reflector is primarily specular if the reflector has a bare metal 
surface and primarily diffuse if the reflector has a white painted surface. Reflection within a 
lighted confined space is likely to be primarily diffuse. Reflection is never complete and reflect
ance of a luminaire surface is not the only parameter that determines how much light eventually 
reaches a plant. Luminaire reflector design and placement are other parameters. With specular 
reflectors, the shape of the reflector determines almost entirely the distribution of light within the 
reflected beam, while with diffuse reflectors the shape has only a minor influence (Elmer, 1980). 

Supplemental lighting for plant growth must meet several criteria. One is amount (intensity, or 
integrated total) of light, or PAR, intercepted by plants. A second is spacial uniformity of PAR 
within the plant canopy. Energy efficiency is a third criterion, particularly in commercial green
houses, but also in research facilities such as plant growth chambers where an energy inefficient 
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lighting system imposes a double penalty when the additional heat must be removed by a 
mechanical refrigeration system. 

The amount of PAR intercepted by a plant canopy leads directly to total growth and development 
of the plants. Uniformity can be related to crop timing and consistency. In a research setting, 
lighting uniformity is likely to be very important if plant-to-plant comparisons are to be valid 
and adequate statistical test sensitivity is to be achieved. 

Lighting plant growth chambers for research is a particularly difficult design problem. The 
importance of uniformity in commercial greenhouses may be less important, depending on the 
crop. For example, a crop harvested continuously, such as roses or tomatoes, will be less likely 
to suffer from lighting non-uniformity. Conversely, a crop harvested as a unit, such as 
hydroponic lettuce, must be relatively consistent to meet market expectations and light unifor
mity is crucial to crop uniformity. 

Supplemental lighting for plant growth on the scale of commercial greenhouses is a relatively 
expensive undertaking. Light intensities are often much higher than required for task (vision) 
lighting, which increases both installation and operating costs. However, and especially in the 
northern regions of the United States (and Canada, Europe, etc.), supplemental lighting during 
winter may be necessary to produce certain crops (e.g., tomatoes) and very useful to achieve full 
plant growth potential and crop timing with most other greenhouse crops. Operating costs over 
the life of a luminaire typically will exceed the initial investment, making lighting efficacy a 
major consideration. 

This report reviews tests completed to evaluate the efficiencies of various commercially-avail
able High-Pressure Sodium luminaires, and then describes the results of using a commercial 
lighting design computer program, Lumen-Micro l

, to explore how to place luminaires within 
greenhouses and plant growth chambers to achieve light (PAR) uniformity and relatively high 
lighting efficacies. Several suggestions are presented which could encourage systematic design 
of plant lighting systems. 

LUMINAIRES 

The purpose of using a luminaire rather than a bare lamp is to direct, distribute and focus both 
direct and diffuse light. Luminaires generally consist of some or all of the following components 
(CADDETT, 1991): 

> a housing to contain or support the other necessary parts, such as the ballast, 

> a reflector (troffer) to direct light into a desired pattern, 

> one or more lamps, and 

1 Version 5, Lighting Technologies, Inc., Boulder, CO. 
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> a lens,or shield to reduce glare, protect the lamp, and perhaps to direct or focus the light. 
Lenses are less commonly used in luminaires for plant lighting, although a light cap in a 
plant growth chamber will often be covered on the underside with a transparent layer so 
the light cap can be separately ventilated. 

Luminaire efficiency is typically defined as the ratio of the total number of lumens from a 
luminaire to the total lumens produced by its lamp(s). This differs from efficacy, defined as the 
light output from a luminaire related to power input. 

The reflector is usually the component that most significantly affects luminaire efficiency. The 
surface treatment of the reflector and the physical design of the reflector each affect the 
efficiency. The surface treatment may be white paint, which has a low value of specular 
reflectance but which can produce a total reflectance from 60 to 80%. Anodized polished 
aluminum has a high value of specular reflectance and can produce a total reflectance greater 
than 90%. These values may be, of course, greatly reduced by poor physical design of the 
reflector or a build-up of surface film. Even in a clean office environment, luminaire efficiency 
may be reduced by one-third after a decade of not cleaning (Bean & Simons, 1968, although 
smoking by occupants is likely a factor ofless significance today). 

SURFACE REFLECTANCE 

Surface reflectance is important for luminaire reflector design, but that is a consideration left for 
luminaire manufacturers to contend with. Lighting system designers are more concerned with 
reflectance of surfaces within the lighted space. This is particularly true in plant growth 
chambers where a significant fraction of light reaching a plant canopy will have been reflected at 
least once from interior surfaces (walls, ceiling, floor). Reflectance of surrounding surfaces may 
be less impOltant in commercial greenhouses although white mulch may be used, as under a 
tomato crop, for example, to improve the light environment of the crop. Surface (especially 
wall) reflectance may be very significant in small research greenhouses. 

Two reflectance factors may be considered: total reflectance, and the spectral variation of 
reflectance. Table 1 contains data demonstrating the variation of diffuse reflectance (albedo) for 
common materials. Even the best reflector, white paint, absorbs approximately one-quarter of 
the incident light. Surfaces that may appear to the human eye to be quite reflective (e.g., pastel 
paints) are likely to absorb more than haIf the incident light and be classified, technically, as 
absorbers rather than reflectors. The human eye is deceptive in this regard. The effect of surface 
reflectance on lighting system designs in a plant growth chamber will be explored later in this 
report. 

Plant research may require a second reflectance factor be considered in design (especially for 
plant growth chambers): the spectral dependence of reflectance. Table 2 contains data to 
demonstrate the magnitudes of spectral dependencies. First, the spectral dependencies of what 
may appear to be two similar materials vary in opposite directions. Second, the reflectance can 
vary by more than 10% over the PAR spectrum. Because of the importance of multiple 
reflections in the light environment of a plant growth chamber, spectral quality should be 
measured at the plant canopy within the chamber; manufacturer's data for the lamp alone may 
not apply. 
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TABLE 1 Surface reflectances of various materials 

Material 

Ordinary white paper 
ZnO (white) paint 
Aluminized paint 
White lead paint 
Yellow paint 
Yellow paper 
Wood, pine 
Sandy loam, dry 
White-washed surface 
Grass (turf) 
Deciduous Woodland 
Coniferous woodland 
Open water 
Dry soil (light color) 

Albedo for "white" light* 

0.6 to 0.7 
0.7 
0.45 
0.75 
0.55 
0.25 
0.4 
0.24 
0.5 
0.24 
0.18 
0.16 
0.05 
0.32 

*Handbook of chmistry and physics, 1985; and Campbell, 1986 

TABLE 2 Spectral dependence of reflectance of various materials· 

Wavelength, microns 

Material 0.4 0.5 

ZnO (white) paint 0.74 0.84 
White porcelain enamel 0.77 0.73 

*Handbook of chmistry and physics, 1985 

LUMINAIRE EFFICACY 

0.6 

0.85 
0.72 

0.7 

0.86 
0.70 

Luminaire efficacy is important in two ways for designing systems. First, a luminaire that 
produces more PAR for each input watt will be more energy efficient and less expensive to 
operate. Additionally, greater light output for the same wattage rating may permit fewer 
luminaires to be required for a practical installation, as in a commercial greenhouse. If each 
luminaire requires less energy, and fewer luminaires are required, the savings are compounded. 
This precept was explored through a series of tests of nine different HPS (High Pressure Sodium) 
luminaires currently available for commercial use (Both, et al., 1992, 1994). Only one of each 
model was tested and the tests were of the luminaires as purchased. No standard ballast (IESNA, 
1984) was used, for example. However, the results showed a range of expected efficacies and 
provided data useful for exploring the inter-relationship ofluminaire selection and ultimate 
system design and operating cost. The same 400 VI lamp (seasoned) was used in all luminaires 
to remove one source of variability. 
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The luminaires were tested in the testing facility of the Department of Agricultural and Biological 
Engineering of The Pennsylvania State University, a facility described by Turn and Walker (1987). 
PAR distribution patterns for eight of the luminaires are in Fig. 1. Ratings by PAR output and energy 
efficiency are in Table 3, but note that the order ofluminaires in Table 3 does not correspond to the 
order of luminaires in Fig. 1. The data will be used in several examples that illustrate system design 
procedures and considerations. 
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Fig. 1. PAR distribution patterns of eight 400 W HPS luminaires at a mounting height of 1.5m (5'). 
Contour lines are in /-imolm·2s·1

, horizontal dimensions are in feet. Luminaire axis E-W, transverse 
axis N-S. Continued on next page. 
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Fig. 1. Continued 

TABLE 3 Luminaire ratings by PAR output and efficacies. 

Average Average mol PAR mol PAR Lumens 
Luminaire watts umol S·l per kWh perkJ per watt 

A 426 346 2.92 811 58.0 
B 435 424 3.51 975 69.7 
C 461 365 2.85 792 56.6 
D 414 326 2.84 789 56.3 
E 424 360 3.06 850 60.7 
F 476 372 2.81 781 55.8 
G 398 356 3.22 895 63.9 
H 396 318 2.89 803 57.4 

CO:MPUTER PROGRAMS FOR LIGHTING SYSTEM DESIGN 

Many luminaire manufacturers have developed computer programs useful for designing lighting 
systems. Such programs are generally proprietary. A commercially available program, Lumen
Micro, was used to obtain the results presented in tins report. The luminaire data files were 
originally created in IES format (IESNA, 1986). However, the standard IES format includes 
candela values for each vertical angle at each applicable horizontal angle at which data were 
taken for the luminaire. Candela values in the data file lead to foot-candle values oflight 
intensity as the program's output, not units useful for plant lighting. For this report, the candela 
data were multiplied by the factor 0.1318 (for the spectrum ofHPS lamps) to calculate PAR 
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units of Ilmolm-2s-1. Total lamp output, lumens, was converted to Ilmols-l after multiplying by 
the factor 0.014. 

PAR UNIFORMITY CRITERIA 

Several criteria have been proposed as measures oflighting uniformity. One is the ratio of the 
minimum light value within a lighted space to the maximum value (philips Lighting, 1991), with 
a suggested minimum value of 0.7. A second is the ratio of the minimum light value to the 
average (Stolze, et aI., 1985). A third is a Uniformity Criterion (VCl) defined as follows 
(Schwab, et aI., 1981): 

(I) 

where Yi represents the individual values, Yavc is the mean over the lighted area, and N is the 
number of values (readings). In practical terms, UCI is the complement of the average deviation 
from the mean divided by the mean. A minimum value of 0.75 was suggested. 

A fourth Uniformity Criterion (UC2) is suggested here based on the statistical concept of the 
Coefficient of Variation (CV), the standard deviation divided by the mean (Steel and Torrie, 
1960): 

(2) 

The primary difference between UCI and UC2 is the greater weight UC2 gives to values greatly 
different from the mean, values that would, in an experiment, significantly reduce the sensitivity 
of testing a hypothesis by statistic means. 

A fifth means to quantify lighting uniformity will be considered here, based on a frequency 
graph. That is, all PAR measurements within a lighted space are listed, sorted (ascending order) 
and graphed as a function of their sequence number. Zones of acceptable uniformity (for 
example, within ±10% of the mean) can be added to the graph to indicate, visually, which 
regions of the lighted area meet or exceed the acceptable uniformity criterion. As a note 
regarding the Lumen-Micro program, contour graphs oflight intensity are provided to the user 
and the contour lines can be color-coded so zones where the PAR is above or below the criterion 
(e.g., ±1O%) can be readily identified. The combination of frequency graphs and color-coded 
contour graphs can be a powerful tool a designer can use to assess the extent of non-uniformity 
and then understand where it occurs. Such visual clues can, perhaps, lead a designer to alter 
luminaire layouts for better uniformity. 

Each of these criteria will be presented for the three examples to follow. 

EXAMPLE 1, LARGE COMMERCIAL GREENHOUSE 

As an example of commercial greenhouse supplemental lighting, a square greenhouse section of 
approximately one-half hectare (approximately one acre) was considered. The luminaire 
mounting height was assumed to be 3.05 m (10'), with the top of the plant canopy at 0.91 m (3') 
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and each luminaire suspended with its opening 0.91 m (3 1
) below the mounting height. Wall and 

ceiling reflectance of 0.1 and a floor reflectance of 0.2 were assumed. A luminaire maintenance 
factor of 0.9 (relatively clean) was assumed and all luminaires for each calculation were consid
ered to be installed with the same orientation (no rotation of individual luminaires, and verti
cally). For illustrative purposes, supplemental PAR of 50 J.lmolm-2s-1 was the design goal. The 
luminaire models listed in Table 3 were considered. 

To provide an example conforming to what might be considered conventional practice, luminaire 
layout was in a rectangular grid. No attempt was made, initially, to search for a layout to 
maximize uniformity. The example will then be continued, choosing one of the luminaire types 
and exploring alternative layouts to improve unifonnity. 

Although it was not practical to achieve exactly 50 J.lmolm-2s-1 using each luminaire model in 
grid patterns that would be reasonable (relatively regular), all designs provided an average 
within 4% of the design goal. The grid of calculated values provided 400 data values (20x20) 
within the lighted space and the grid for calculations was not a multiple of the luminaire installa
tion grid, which could have led to erroneous estimates of the average by including repetitive 
sequences of intensity values. It should be noted that edge effects were limited in the uniformity 
analyses by omitting PAR values along the outer 0.6 m (2') perimeter of the hypothetical green
house section. 

A summary of calculated PAR values is in Table 4. Several features of the data should be 
highlighted. First, not all installations require the same number ofluminaires. Installing model 
H requires only 676 luminaires; installing model D requires 840. The added expense of 
installing 164 luminaires, alone, could be reason to reject some of the models. With essentially 
the same PAR level provided by each of the eight designs, installed kW relate proportionally to 
electricity used, showing a difference of30% from the lowest to the highest in expected energy 
use and operating cost. Individualluminaire efficacy is, by itself, shown not to be the sole 
consideration in electricity use. 

TABLE 4 Design results from ExamEle 1, a 0.5 ha commercial greenhouse 

Luminaire 

A B C D E F G H 

Number Required* 784 676 728 840 728 728 728 676 
WattslLuminaire 426 435 461 414 424 476 398 396 
Installed kW 334 294 336 348 309 347 290 268 
Ave. j.lmolm-2s-1 49.8 51.4 49.8 49.1 50.2 51.3 49.2 48.4 
Std. Deviation 6.15 11.4 10.0 4.45 7.11 18.4 6.59 7.31 
MinimumIMaximum 0.59 0.42 0.47 0.68 0.57 0.15 0.58 0.48 
Minimum! Average 0.74 0.66 0.70 0.86 0.78 0.25 0.77 0.68 
UC1 0.90 0.82 0.83 0.93 0.88 0.69 0.89 0.87 
UC2 0.88 0.78 0.80 0.91 0.86 0.64 0.87 0.85 
Fraction within ±10% 0.59 0.38 0.34 0.78 0.47 0.07 0.58 0.48 
Fraction within ±15% 0.73 0.49 0.45 0.91 0.69 0.15 0.67 0.71 
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Frequency graphs of the eight cases are grouped in Fig. 2. As an example of a unifonnity 
criterion, the ± 1 0% (horizontal) lines are included. Although corresponding contour graphs are 
not included because of the space they would require, it should be noted that PAR values outside 
the ± 10% boundaries occurred in small regions and in patterns with the recurrence intervals of 
the luminaires. 
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Fig. 2. Frequency graphs for Example 1, corresponding to the luminaires listed in Table 4. 
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To continue the example, one of the luminaires was selected for further design analysis. From 
Table 3, a choice for discussion purposes is luminaire B, for only 676 units were required, the 
PAR was slightly above the design goal, and its uniformity values were not high. The goal is to 
improve uniformity. A first change in design is to re-arrange the luminaires from a rectangular 
to a checkerboard pattern. The PAR pattern from luminaire B is not symmetrical, thus another 
option is to rotate the luminaires in every other row by 180 degrees, while keeping them in a 
checkerboard pattern. These two modifications were entered into Lumen-Micro; the results are 
in Table 5. First, the change to a checkerboard pattern reduced the average supplemental PAR 
from 51.4 to 50.7 Ilmolm-2s-1, with a concomitant reduction in the number ofluminaires from 676 
to 652. Further, using a checkerboard pattern increased uniformity, but not to a level of high 
uniformity. If the goal is to have most (e.g., 85%) of PAR values within ±15% of the average, 
none of the design changes are satisfactory. The solution would be to use another of the lum
inaires, probably with a layout to yield a pattern with a higher uniformity (in this example, 
perhaps H) so as to use a minimal number ofluminaires (that is, luminaire D already provides a 
high degree of uniformity when measured as ±15% of the average, but 840 luminaires are requir
ed). 

TABLE 5 Design results from Example 1, large commercial greenhouse. 

From Table 4 Checkerboard Checkerboard 
Pattern 180 Deg Spin 

Ave, j.lmolm-2s-1 51.4 50.7 50.7 
Std. Deviation 11.4 9.28 9.23 
MinimumIMaximum 0.42 0.48 0.48 
Minimum! Average 0.66 0.71 0.71 
UCI 0.82 0.88 0.88 
UC2 0.78 0.82 0.82 
Fraction within ± 1 0% 0.38 0.49 0.44 
Fraction within ±15% 0.49 0.64 0.64 

It should be noted that Example 1 has posed a difficult design problem if uniformity is the goal. 
The relatively low light level leads to relatively wide luminaire spacing and a resulting PAR 
nonuniformity. Greater PAR values will be explored in Example 2. 

EXAMPLE 2, SMALL RESEARCH GREENHOUSE 

For illustrative purposes, a small greenhouse section is considered to represent research green
houses. The section is assumed to be square and 12.2 m (40') on each side. The same mounting 
height, plant canopy height, reflectance, maintenance factor and suspended distance as in Exam
ple 1 are assumed. Surface reflectances are more important in this, a smaller greenhouse, thus 
careful thought should be expended to estimate them. Finally, edge effects are likely to be a 
major concern in small greenhouses; it is assumed the outer meter of floor perimeter will not be 
used for plant growth except, perhaps, for guard plants. 
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Only one of the luminaire types will be considered in the following simulations. The same concerns of non
uniformity and number required as in Example 1 should be of concern, of course. Luminaire G is used in 
this example because its light pattern is reasonably square and there appears not to be a "hot ll spot directly 
under the luminaire. 

As a base case, a uniform, rectangular grid was assumed, with 100 luminaires (lOxlO grid) starting 0.91 m 
from each boundary and spaced at 1.15 m (3.781

). Such close spacing is required to achieve a design goal of 
200 Ilmolm-2s-1. These assumptions result in an average PAR level of 197 Ilmolm-2s-1, considered to be 
within the error level of the assumptions. Other uniformity data are in Table 6. 

TABLE 6. Design results from Example 2, smail research greenhouse. 

Base Case Change 1 Change 2 Change 3 

Ave, .umolm-2s-1 197 204 204 207 
Std. Deviation 29.4 15.7 14.9 13.3 
MinimumIMaximum 0.47 0.60 0.60 0.66 
Minimum! Average 0.55 0.69 0.67 0.73 
UCI 0.87 0.94 0.95 0.95 
UC2 .0.85 0.92 0.93 0.94 
Fraction within ±10% 0.48 0.78 0.92 0.94 
Fraction within ±15% 0.81 0.97 0.96 0.98 

Analysis of the base case resulted in the graph in Fig. 3a. As can be seen, there is not a great deal of 
uniformity over the growing area, although the data showed a high degree of uniformity (but levels near 220 
Ilmolm-2s-1) over the center section of the greenhouse. PAR around the perimeter, however, was nonuniform. 
The number ofluminaires was relatively adequate, the arrangement was not. 
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As a next step, more luminaires were placed around the perimeter, with fewer in the center 
section. The central area (starting 1.83 m from each boundary) was filled with a rectangular 
pattern of 64 (slightly more widely spaced) luminaires (8x8 grid). Twelve luminaires were 
placed along each boundary of the perimeter, starting 0.91 m from each wall, for a total of 44 
units at the perimeter and a total of 108 within the greenhouse (8 more than the base case). 
Results are tabulated in Table 6 as Change 1 and the uniformity is summarized in Figure 3b. 
There is an obvious improvement over the base case, but nearly a quarter of the grid points 
remain outside the ±10% region. 

Examination of Change 1 showed regions near two opposing boundaries with numerous PAR 
values above the + 10% limit and two regions near the other opposing boundaries with numerous 
PAR values below the -10% limit. One luminaire was removed from each of the two opposing 
boundaries that were above the + 1 0% limit and the remaining luminaires in those two boundaries 
re-spaced evenly. One luminaire was added similarly to the other two opposing boundaries. The 
modified design, tabulated as Change 2, yielded data as shown in Table 6 and Fig. 3c. The 
change improved the uniformity significantly, leaving only 5 or 6 grid points at each comer 
below the -10% limit. A smattering of grid points scattered along the boundaries fell very slight
ly below the -10% limits. No grid points fell above the + 10% limit and 92% were within ± 10%. 

A final modification was to add one more luminaire to the two (opposing) boundaries that had 
yielded the scattered values falling slightly below the -10% limit, bringing the total number of 
luminaires to 110. The results, tabulated as Change 3, are summarized in Table 6 and Fig. 3d. 
The simulation predicted four grid points at each comer of the space would still fall below the -
10% limit, but all other grid points would fall within the ± 10% band. Comers of square regions 
are very difficult to light and are suggested to be considered additional "edge effect" regions, 
along with the outside boundaries. Comers constitute a small part of the total growing space 
(less than 10%) and, although adding and carefully aiming another luminaire at each comer 
could bring the four regions closer to the uniformity limits, it is questionable whether to do so 
would be useful because of the rather different micro climates (also affecting plant growth) that 
exist at comers. 

It should also be noted that changing the surrounding surface reflectances brought the boundary 
grid points to within the -10% limit without adding more luminaires than were used in the base 
case. However, the higher reflectance caused the second and third grid points (away from the 
boundaries) to rise above the + 10% limits, not helping uniformity. Further, it is not clear that 
greenhouse surfaces will have reflectances much greater than 0.1. 

EXAMPLE 3, PLANT GROWTH CHAMBER 

Surface (wall, etc.) reflectance becomes an increasingly important parameter as the size of a 
lighted space (room) grows smaller. This factor is accentuated when one considers lighting plant 
growth chambers. However, reflectance may be considered as an opportunity, not necessarily a 
problem. Careful design can use walls as additional reflectors to yield greater uniformity near 
the walls than might otherwise exist. The effect will be explored below. 
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For discussion, a walk-in chamber with a 2.44 x 3.66 m (81xI21) floor and 2.44 m (81) high side 
walls was assumed. Surface reflectances of 0.6 and 0.2 were assumed for the walls and ceiling, 
and floor, respectively. HPS luminaires were considered to evaluate their suitability for growth 
chamber lighting, and to achieve the desired high PAR levels. The lighted plane was assumed to 
be 0.76 m (2.51) above the floor, with the luminaires flush with the ceiling. The same lamp 
maintenance factor, 0.9, was assumed. This factor is particularly important when designing for 
growth chambers where a shield is often placed between the luminaires and the growing area. 
The value of 0.9 assumes a clear and clean shield, with the luminaires in "like new" condition. 
Two PAR values were considered, 200 and 300 Jlmolm-2s-l

• 

Luminaire C was chosen, more for the shape of its light pattern than for its light pattern 
uniformity. That is, the space to be lighted was rectangular; the light pattern from luminaire C is 
relatively rectangular. 

As a base case, 12 luminaires were considered, aligned along the four walls of the chamber, 0.3 
m (1 I) from the walls. Five luminaires were assumed along each long wall, spaced evenly, with 
one additionalluminaire placed in the center of each of the short walls, for a total of 12 
luminaires. Each luminaire was assumed to be aimed vertically. For this base case, the average 
PAR at the work height was calculated to be 214 Jlmolm-2s-l

• Other data are in Table 7 and the 
resulting uniformity graph is in Fig. 4a. For a beginning, uniformity was reasonable with 90% of 
the grid points within the ± 10% limits. 

TABLE 7. Design results from Example 3, plant growth chamber 

Base Case Change 1 Change 2 Change 3 

Ave, j.lmolm-2s-1 214 201 296 302 
Std. Deviation 14.8 10.8 15.8 8.9 
MinimumIMaximum 0.73 0.75 0.76 0.86 
Minimum! Average 0.79 0.80 0.80 0.89 
VCl 0.94 0.96 0.96 0.98 
VC2 0.93 0.95 0.95 0.97 
fraction within ± 1 0% 0.90 0.94 0.94 0.98 

Nonuniformity in the base case arose, expectedly, from values along the four walls. Reflections 
from walls were enhanced to improve uniformity in a modification of the hypothetical design, 
termed Change 1. Each luminaire along the two long walls was tilted by 15 degrees toward the 
wall. Luminaires along the short walls were also tilted by 15 degrees toward their walls. The 
calculated results, Change 1, are tabulated in Table 7 and the uniformity graph is shown in Fig. 
4b. Some improvement is evident. The average PAR was reduced to 201 Jlmolm-2s-1 (the walls 
absorbed more of the PAR), which improved the design. But more important was the uniformity 
increase; 94% of the grid points fell within the ±10% limits and those that exceeded the limits 
were at the four comers of the chamber. Most values along the perimeter fell within the limits, 
limiting "edge effect" problems. If all perimeter grid points are discounted, the uniformity in
creased significantly with most points within 3% of the mean of the smaller region. This result 
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provided encouragement that, with carefulluminaire placement and aiming, very good 
uniformity can be achieved using HPS luminaires in plant growth chambers. 
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Fig. 4. Frequency graphs, Example 3: (a) base case, (b) change I, (c) change 2, (d) change 3 

But, to reach a daily total of26 molm-2 of PAR within the chamber (with 24 hour lighting), 300 
Ilmolm-2s-1 are required. The next change was to add luminaires to reach this PAR level. Two 
more luminaires were added along each long wall (7 total along these walls) and one more was 
added along each short wall, for a total of 18 luminaires in the chamber. It should be noted this 
type of design is essentially what is termed "perimeter" design and is the only way to achieve 
uniformity. Several trials of tilt angles of the luminaires showed the best uniformity was 
achieved when tilt angles were increased from 15 to 17.5 degrees. The result of this calculation 
is in Table 7 as Change 3, with the uniformity graph shown in Fig. 4c. Uniformity increased 
slightly compared to Change 2, primarily because of the different tilt angle. The results dem
onstrated the possibility of achieving good uniformity at high PAR levels in small spaces. 

Finally, grid data for Change 3 showed the greatest variation of values still clustered along the 
perimeter. Perimeters of growth chambers have traditionally not been used for plant growth 
because of edge effects. As a final design consideration, the outer grid points were discounted 
and only the region at least 0.3 m (1') from any wall was considered. The result, Change 4, is 
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summarized in Table 7 and Fig. 4d. Uniformity for this case was within ±5% for 90% of the grid 
points, and only a few points at the corners were outside the ±10% boundary. 

SUM:MARY AND CONCLUSIONS 

After reviewing basic information, three design examples have been presented to demonstrate a 
process of supplemental lighting design. The sequences of each example suggest careful thought 
and analysis are required to obtain supplemental lighting designs that provide both high levels of 
PAR and suitable uniformity. The end results of the three examples that have been presented 
here are not intended to suggest ultimate design paradigms. Rather, they should suggest how an 
analysis can evolve to achieve desired results, and the types of tools and adjustments required. 

It appears possible to design research greenhouses and plant growth chambers to achieve a ±10% 
PAR uniformity using HPS luminaires. Further, HPS luminaires (and, by extension,:MHD, etc.) 
are required to achieve high PAR levels and have the decided advantage of providing the 
possibility of aiming, which reduces the region of the lIedge effectll. This is a feature not readily 
possible using fluorescent lamps. However, tight control of uniformity appears unlikely without 
access to carefully obtained data from commercial luminaires and access to a computer-based 
design procedure. Further, for designing plant lighting systems, a modification of the standard 
IES luminaire data file structure is potentially useful. Instead of luminaire data presented in can
del as, a standardized data structure is suggested to give designers access to luminaire data files 
(as from manufacturers or independent laboratories) with zonal data in Ilmols-l, leading to results 
in Ilmolm-2s-1. 

Luminaire installation is an important factor to obtain PAR uniformity. Spacing and mounting 
height are critically important, for luminaires are spaced closely to obtain high PAR values and 
horizontal or vertical displacements by only a few inches can result in overlapping PAR patterns 
that go significantly outside the desired limits of uniformity. Additionally, the mounting angle 
of each luminaire must be carefully adjusted (and adjustable later, perhaps?) to conform with 
design assumptions. A tilt error of only a few degrees can lead to overlapping PAR patterns that 
disrupt uniformity. This is true for both plant growth chambers and greenhouses. 

Surface reflectances are particularly important when designing for small lighted regions such as 
plant growth chambers and research greenhouses. It is not obvious, just from looking at a 
surface, what its reflectance is. It is suggested that an effort be mounted to develop valid surface 
reflectance data to be used by designers. It would be useful to develop and publish a data base of 
effective ( diffuse) reflectance values for the types and conditions of materials and configurations 
common to greenhouses and plant growth chambers. Further, the importance of the surfaces 
(particularly the walls) in achieving PAR uniformity suggests the importance of periodic 
cleaning/maintenance to retain initial reflectance values. 

DEFINITIONS 

Albedo: Fraction of incident light reflected (diffusely) from a surface. 

Diffuse Reflection: Light is scattered in every direction from the reflecting surface. 
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Efficacy: Light output of a luminaire in relation to power input, expressed as lumens/watt or 
similar units. 

Efficiency: The proportion of input power that is transformed into useful light, expressed as a 
percentage. 

Irradiance: Radiant energy flux expressed in W/m2
, or similar units. Spectral irradiance is 

irradiance integrated over a bandwidth. 

Lighting Power Density: Power used for lighting over an area, expressed in watts/m2
, or 

similar units. 

Luminaire Efficiency: Ratio oflight energy emitted from a luminaire to the lamp total light 
energy output. 

PAR: Photosynthetically Active Radiation, 400-700 nm. 

Specular Reflection: Light is reflected in one direction, at an angle equal to the angle of 
incidence. 

REFERENCES 

Bean, A.R. and R.H. Simons. 1968. Lighting fittings - performance and design. Pergamon 
Press, London. 

Both, A.J., L.D. Albright, RW.Langhans, B.G. Vinzant and P.N. Walker. 1992. Research on 
energy consumption of HID lighting. Proceedings, National Agricultural Demand-Side 
Management Conference. Syracuse, NY. Oct. 20-22, 1992. NRAES Publication 
NRAES-65, pp. 125-134. NRAES, Riley-Robb Hall, Cornell University, Ithaca, NY. 

Both, A.J., L.D. Albright, RW. Langhans, B.G. Vinzant and P.N. Walker. 1994. Electric 
energy consumption and light output of nine 400 Watt high pressure sodium luminaires 
and a greenhouse application ofthe results. Acta Horticulturae (in press). 

CADDET. 1991. Energy efficient lighting in commercial buildings. Analysis Series NO.6. 
Centre for the Analysis and Dissemination of Demonstrated Energy Technologies. 
United Kingdom. 

Campbell, G.S. 1986. An introduction to environmental biophysics. Springer Verlag, NY. 

Elmer, W.B. 1980. The optical design of reflectors. John Wiley & Sons, NY. 

IESNA. 1984. Approved method for the electrical and photometric measurements of high 
intensity discharge lamps (IES LM-51-1984). Illuminating Engineering Society of North 
America, NY. 

296 



IESNA. 1986. Recommended standard file format for electronic transfer of photometric data 
(IES LM-63-1986). Illuminating Engineering Society of North America, NY. 

Philips Lighting. 1991. Application guide: horticultural lighting. Philips Lighting Company, 
Somerset, NJ. 

Schwab, G.O., RK. Frevert, T.W. Edminster and K.K Barnes. 1981. Soil and water 
conservation engineering. John Wiley & Sons, NY. 

Steel, RG.D. and J.H. Torrie. 1960. Principles and procedures of statistics. McGraw-Hill, NY. 

Stolze, J.A.B., J. Meulenbelt and J. Poot. 1985. Application of grow lights in greenhouses. PL 
Light Systems. Ontario, Canada. 

Tum, S.Q. and P.N. Walker. 1987. Design and operation ofa test facility for determining 
photosynthetic photon flux density distribution of luminaires for greenhouses. 
Transactions of the ASAE 30(2):492-495. 

Weast, RC., ed. 1985. Handbook of chemistry and physics, 66th ed. CRC Press, Inc., Boca 
Raton, FL. 

297 



298 



SHORT REpORT 

LUMINAIRE LAYOUT: DESIGN AND IMPLEMENTATION 

A.J. Both 

Department of Agricultural and Biological Engineering 
Cornell University, Riley-Robb Hall, Ithaca, NY 14853-5701, USA 

The following infonnation was presented during the discussion regarding guidelines for PAR 
unifonnity in greenhouses. The data shows a lighting unifonnity analysis in a research 
greenhouse for rose production at the Cornell University campus. The luminaire layout was 
designed using the computer program Lumen-Micro (Lighting Technologies, Inc., Boulder, CO). 
A total of 48 luminaires (General Electric, model GHL Low Profile, 400 Watt HPS) were 
installed (Figure 1). After implementation of the design, accurate measurements were taken in 
the greenhouse and the unifonnity analysis for both the design and implementation were 
compared (Table 1). A study of several supplemental lighting installations resulted in the 
following recommendations: 
• Include only the actual growing area in the lighting unifonnity analysis (i.e., exclude 

any areas, such as walkways, at the edges of the growing area). 
• For growing areas up to 20 m2

: Take 4 measurements per m2
, i.e., one measurement in 

the center of each 0.25 m2 (0.5 m by 0.5 m). 
• For growing areas above 20 m2

: Take 1 measurement per m2
, i.e., one measurement in 

the center of each m2 (1 m by 1 m). 
• Use one of the Unifonnity Criteria (Table 2) and frequency graphs (Figure 2) to 

compare lighting unifonnity amongst designs. 
• Design for a Unifonnity Criterion of at least 0.75 (preferably at least 0.90) and the 

fraction within ± 15% of the average PAR value should be close to 1 (Figure 2). 

TABLE 1. Lighting unifonnity analysis for the rose greenhouse at Cornell. 

Average 
Average ± 15% 
Min-Max 
Standard Deviation 
Growing Area (m2

) 

Number of Data Points 
Number of Measurements m-2 

Number of Luminaires 
Number of Luminaires m-2 

MinlAvg 
MiniMax 
Unifonnity Criterion 1 
Unifonnity Criterion 2 

DESIGN 
107 
91 - 123 
49 - 159 
30 
118 
220 
1.9 
48 
0.4 

(Recommendation) 
0.46 (~0.80) 

0.31 (~0.70) 

0.77 (~0.75) 

0.72 (~0.75) 
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IMPLEMENTATION 
97 
82 - 112 
28·· 167 
33 
118 
128 
1.1 
48 
0.4 

0.29 (~0.80) 

0.17 (~0.70) 

0.72 (~0.75) 

0.66 (~0.75) 



TABLE 2 Definitions of two Unifonnity Criteria (DC) 

UCI = 

UC2 = 

where: Y. 

l-CV= 

= 

Yave 

n 
CV 

PAR reading at location i 
= Average PAR reading over the growing area 
= Number of PAR readings over the growing area 
= Coefficient of variation 

+ 2.5m 

GROWING AREA 

~----------------------------------~8m 

11 m 

Fig. 1. Luminaire layout for a rose greenhouse at Cornell. Additional dimensions are: The 
bottom of the reflectors is located 1 m above the top of the canopy and the top of the canopy 1.95 
m above the floor. The walkway along the left side wall is 1.45 m wide and the one along the 
right side wall 2 m. The distance between the luminaires in the top and bottom row is 1.22 m and 
the same distance in the center rows is 2.76 m. The distance between the top row and the top 
center row is equal to the distance between the bottom center row and the bottom row and is 1.8 
m. The distance between the luminaires in the left and right columns is 2 m. The center 
luminaires of the left and right columns are positioned directly underneath the ridge of the 
greenhouse. The left most luminaire on the bottom row is positioned 2.5 m from the left side 
wall and also 2.5 m from the bottom side wall. 
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Fig. 2. Frequency graph for a rose greenhouse at Cornell. 
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SHORT REpORT 

LIGHTING INSTALLATIONS 

Kees Schurer 

IMAG-DLO, P.O. Box 43,6700 AA Wageningen, The Netherlands 

Model computations that give the lay-out of a lighting installation have to be implemented 
in the real world. There, deviations from the ideal performance of just about every element 
of the installation will be felt. A list of possible sources of non-ideal behavior, based on 
practical experience, are the following: 

Lamps: Discharge lamps are manufactured to close tolerances of, typically, ±3%. Their 
light output decreases during their life, depending on operating conditions and lamp type. 
A typical value is 15 % over 10,000 hours for HPS lamps, which is well before their "burn
out". It should be decided in the design phase what level of reduction is acceptable, and a 
schedule for lamp replacement should be drawn up accordingly. 

Ballasts: Ballasts built to lEe standards have close tolerances of, typically, ± 3 %. Their 
power output will gradually change during their useful life. This useful life depends largely 
on the highest temperatures during operation, which in tum depend on the design of the 
fixture. 

Reflectors: A good reflector design can be reproduced to within a few percent. Someti
mes, however, unfavorable conditions during production result in a significantly lower 
luminaire efficiency. 

Mountin~ Position: The distance between fixtures in relation to the highest level specified 
(top of the crop) is often such, that adjacent light distributions only just overlap. Then, a 
slight tilt of a luminaire means a dark gap between the lighted areas. The mounting height 
is best chosen as high as possible, and careful levelling is often required. 

Sa~~in~ of Lamps: The lamps often sag under their own weight in or with the socket. This 
always decreases lighting uniformity. Some luminaire designs provide an extra support for 
the lamp at its top. 

Soi1in~: Soiling of luminaires during operation is unavoidable, though it will affect some 
places more than others. Regular wiping can prevent the occurrence of dark spots over the 
crop. 

It is clear, that with all possible deviations from the ideal the homogeneity of a real lighting 
installation can never be as good as the one computed. The only way to make sure it is 
nearly as good is by measurement of the actual light distribution. Then, an occasional 
adjustment or replacement may often yield a satisfactory result. This measurement should 
really be part of the installation contract. 
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SHORT REpORT 

OSCILLATING LAMP FIXTURE FOR GROWING AREAS 

Harvey Hiatt 

Arizona Sunshine, NAsca Machine, 980 E. Butler Ave., 
P.O. Box 1875, Flagstaff, Arizona 86002 

BEAMFLICKER REPORT 

The Oscillating Parabolic Mirror of "Beamflicker" was designed by Dr. Richard W. Tinus, 
Supervisory Plant Physiologist, USDA Forest Service, Rocky Mountain Forest and Range 
Experimental Station, Flagstaff, Arizona. With his idea, an economic greenhouse lighting 
system was developed and patented. Patent #5095414. 

The Beamflicker uses a stationary 400 watt high pressure sodium arc bulb. The parabolic mirror 
rotates 180 degrees around the bulb to produce intermittent lighting every minute throughout the 
night. This one bulb can replace up to 88 incandescent bulbs in a 40 x 100 foot greenhouse over 
different sections of a growing area. 

The lighting intensity of the Beamflicker varies greatly depending on the distance from the bulb. 
The light intensity varies from 1.3 Jlmol m2s·1 50 feet from the bulb to 52.5 Jlmol m2Ss·1 directly 
beneath the bulb. A year long study involving light intensity and many species will be 
concluded in July 1994. These research results should be published within the next year. 

NASCO Machine of Flagstaff Arizona is the licensed manufacturer of the Beamflicker. For 
more information contact Harvey Hiatt, (602) 774-4501. FAX (602) 779-5662. 
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USE OF PRISMATIC FILMS TO CONTROL LIGHT DISTRIBUTION 

K. G. Kneipp 

3M Company Traffic Control Materials Division, 3M Center, Building 260-5N-14 
Saint Paul, MN 55144-1000 U.S.A. 

INTRODUCTION 

Piping light for illumination purposes is a concept which has been around for a long time. In 
fact, it was the subject of a 1881 United States patent! which proposed the use of mirrors inside a 
tube to reflect light from wall to wall down the tube. The use of conventional mirrors for this 
purpose, however, has not worked because mirrors do not reflect well enough. The best 
conventional mirrors2 are about ninety-five percent reflective. The rest of the light is lost 
through absorption. So, if a light ray traveling down a tube strikes a mirror surface ten or twenty 
times, and loses five percent with each "bounce," little light is left by the time it reaches the end 
of the tube. On the other hand, optical fibers composed of certain glasses or plastics are known 
to transport light much more efficiently. The light that enters is reflected back and forth within 
the walls of the fiber until it reaches the other end. This is possible by means of a principle 
known as "total internal reflection." No light escapes through the walls and very little is 
absorbed in the bulk of the fiber. However, while optical fibers are very efficient in transporting 
light, they are impractical for transporting large quantities of light. This would require large 
solid fibers which would be very heavy, difficult to install in many applications, and exceedingly 
expensive. 

Lome Whitehead, as a student at the University of British Columbia, recognized that prismatic 
materials could be used to create a "prism light guide," a hollow structure that can efficiently 
transport large quantities of light. The prism light guide was patented in 19813

, exactly one 
hundred years after the first patent on "piping" light appeared! This invention is a pipe whose 
transparent walls are formed on the outside into precise prismatic facets. The facets are efficient 
total internal reflection mirrors which prevent light traveling down the guide from escaping. 
Very little light is absorbed by the pipe because light travels primarily in the air space within the 
hollow guide. And, because the guide is hollow, weight and cost factors are much more 
favorable than would be the case with very large solid fibers. 

The early history of the development of the concept of the prism light guide has been described.4 

In 1983, Whitehead founded TIR Systems Ltd., a company in suburban Vancouver, Canada to 
design, develop, optimize, and manufacture prism light guides. The first guides were 

I W. Wheeler, U. S. Patent 247,229, Apparatus for Lighting Dwellings or Other Structures, 
September 20, 1881. 

2 For example, Silverlux™ film produced by 3M Company. 

3 L. A. Whitehead, U.S. Patent 4,260,220, Prism Light Guide Having Surfaces which are in 
Octature, April 7, 1981. 

4 Popular Science, May, 1988, page 76. 
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constructed as rectangular rigid acrylic pipes with molded-in prisms, and, as shown in Figure 1, 
each side of the 114 inch thick rigid panel was flat. While the original concept was born from the 
early dream of piping sunlight to the interiors of artificially lit buildings, it quickly became clear 
that prism light guides had applicability in a variety of diverse applications and markets. 

Fig. 1. Rectangular rigid hollow light guide 

3M BRAND OPTICAL LIGHTING FILM 

In 1983, 3M recognized that the macro-prism stmcture which existed in the first thick walled 
rigid acrylic panels could be made as a continuous thin film incorporating microscopic prisms 
with the same 90° geometry. The geometry of this film, known as 3M Brand Optical Lighting 
Film (abbreviated OLF), is shown in Figure 2. 
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Fig. 2. 3M Brand Optical Lighting Film Cross-section 

3M's goals in the development of this new film were the advantages of flexibility in cross
section shape, lower material costs, and potential for economical high volume production. The 
material is made from either acrylic or polycarbonate polymer resins which have been especially 
selected for their physical and optical properties. The acrylic film is more stable in certain 
adverse environments. Polycarbonate films, on the other hand, are tougher, can operate at higher 
temperatures, and have better handling properties. Very low light absorption in both materials is 
the critical feature which allows the film to transport and distribute light efficiently. 
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The degree to which the film's prisms shown in Figure 2 deviate from perfect prisms also affects 
the efficiency of the total internal reflection process, and, therefore, the effectiveness of the film 
in transporting and distributing light. Of course, the prisms will not be absolutely perfect, so 
reflectance of the film will not be 100%. Absorption and transmission will occur. Absorption, 
as was mentioned above, is due to bulk absorptivity of the resin used to produce the film, and is 
an irretrievable loss from the optical system. Transmission results from imperfections in the 
form of the surfaces. Examples of these imperfections include 900 comers which are not precise, 
surfaces which are not optically flat or which deviate from the correct angle, optical 
inhomogeneities in the material, etc. Transmission, while generally undesirable if n9t controlled, 
can be used to advantage if one goal of the application is light distribution. With the typical 
losses due to absorption and transmission, the reflectance efficiency ()f OLF has been calculated 
as approaching 99%.5 Using OLF, circular hollow light guides, as show in Figure 3, can be 
produced in a variety of sizes which may be required for specific applications. 

Fig. 3. Circular hollow light guide 

Because of a need to protect our proprietary position, little can be said of the process which 3M 
uses to manufacture OLF with the precision required to produce this very high level of 
reflectance efficiency. Recent advances in precision micromachining, polymer processing, and 
certain other manufacturing technologies have made the development of OLF possible. The 
process is referred to within 3M as "microreplication" and has been found to have broad 
applicability in a number of diverse product areas.6 

CONSTRUCTION AND OPERATION OF HOLLOW LIGHT GUIDES 

OLF will act as either a nearly perfect mirror or transparent window depending upon the angle 

5 S. G. Saxe, L. A. Whitehead, and S. Cobb, Jr., SPIE Volume 692, Materials and Optics 
for Solar Energy Conversion and Advanced Lighting Technology, p. 235, 1986. 

6 R. H. Appeldorn, Nano-Technology Applied to Surfaces, The Royal Society American 
Lecture, London, April 2, 1992. 
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that light strikes the material. For example, the path of a light ray in a typical hollow prism light 
guide is shown in Figure 4. Light enters the tube from an external source, shown as a lamp with 
accompanying reflector. It first strikes the smooth, unstructured side of the OLF film, is 
refracted according to Snell's law, and passes through the smooth side to strike one of the prism 
surfaces. If the ray strikes the surface at an angle greater than the critical angle, it reflects by 
total internal reflection, and heads for the other pIism face. If it reflects again, it returns to the 
interior of the tube for further propagation. This light ray path is also shown in Figure 3. Note 
that the ray spends relatively little time in the OLF plastic bulk, especially if the film is thin, and 
benefits from the low absorption of propagation through air. 

REFLECTOR 
~ INPUT 

\ ~ WINDOW 

Fig. 4. Typical hollow prism light guide 

Since the reflectivity of the film depends directly upon the angle at which the light rays strike the 
prism surface, it is obvious that the characteristics of the light source and reflector used to 
collimate the light are critical to the performance of a prism light guide. For the plastic materials 
used in OLF, light must enter the guide at an angle of27.6° or less from the axis of the guide. 
This is shown in Figure 5. In other words, the cone oflight from the source should form a 55.2° 
angle. In general, this means that very narrow spot light sources are used. 

/ 
Groove 
Direction 

/ 

Fig. 5. Angular distribution of light rays entering hollow light guide 

A "perfect" prism light guide would reflect all rays that entered within that 55.2° cone. 
However, as discussed above, imperfections in the film cause some of the light to be transmitted 
through the film and escape from the guide, making it glow and illuminating the space around 
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the guide. Generally, in the case of hollow light guides, one attempts to "manage" the rate at 
which light leaks from the tube, and create uniformity of light escaping along the entire length. 
One of the most efficient ways to get light out of the tube is to place an additional film (referred 
to as an "extractor" film) inside the tube to "interrupt" light ray propagation and create uniform 
light escape from the tube. This extractor film is typically a matte white vinyl material, such as 
3M Scotchcal™ Series 7725-20 ElectroCut™ film. Another method is to simply cut holes in the 
prismatic film. 

Details of the construction of hollow prism light guides, including predicted performance 
resulting from various light sources, tube sizes, and extractor configurations are given in 
previously published 3M Application Bulletins.7 8 9 Many of the practical issues which must be 
addressed for the successful performance of such fixtures, such as protection from heat, dirt, UV, 
etc., are discussed later. 

APPLICATIONS 

The interesting combination of light transmission and reflection capabilities of OLF has made it 
possible to produce lighting products with unique properties. For example, a point light source 
can appear as an area source. Light can also be distributed uniformly to avoid "hot spots" which 
are often associated with point light sources. In addition, light can be transported from the 
location of the light source to a remote location where illumination is desired. Finally, OLF can 
be used to provide a desired directionality to light. 

The performance which is achievable with OLF often translates into significant product 
advantages and benefits. Several examples include the following: 

Unique Features 

Because the angular distribution of light exiting the prism light guide is controlled, fixtures with 
unique capabilities are possible for some applications. 

Design Freedom 

The use of point sources provides the capability for variable fixture length and diameter. The 
lightweight construction which is possible requires less structural support. Light intensity, 
uniformity, and color are usually easier to control with prism light guides than with standard 
fluorescent fixtures. 

Improved Safety 

Because it is possible to deliver light efficiently to a remote location, it is often possible to locate 
the lamp, ballast, electrical connections, and sources of heat outside of a hazardous or sensitive 
area. 

7 3M Optical Lighting Film Application Bulletin, General Theory, November, 1988. 

83M Optical Lighting Film Application Bulletin, Photometries, September, 1989. 

9 3M Optical Lighting Film Application Bulletin, Photometries Appendix, October, 1989. 
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Ease of Maintenance 

Lamps placed remotely may often be positioned in locations where maintenance is more 
convenient to perform, safer, and less expensive. 

Reduced Cost 

In certain situations, the use of fewer, more efficient light sources may result from the use of an 
OLF-containing fixture. However, in considering overall system cost, it is important to include 
not only the cost of the fixture, but also the potential life-cycle cost reductions for installation, 
operation, and maintenance. 

Over our years of experience in working with OLF, we have uncovered unique and interesting 
lighting applications using this film which are too numerous to mention. In fact, because the 
apparent opportunities for the creation of new products based on the capabilities of OLF are so 
large and diverse, it has sometimes been difficult to assess and manage our product development 
priorities. We have found it easier and quicker to invent new applications for the film than to 
develop and commercialize these myriad opportunities. And, as will be discussed later, there are 
many critical variables which must be addressed in the successful development of a new lighting 
product. As a result, we have recently decided to confine our development efforts to products 
which could find utility in a market which we in 3M know -- the traffic management market. 
The selection of applications for this market was not accidental. It was largely based on the 
recognition that 3M already has good knowledge of the traffic management market through 
existing sales of a wide variety of retroreflective products for marking road surfaces, vehicles, 
and highway signs. It is a market for which we have effective distribution around the world. As 
a result, we have introduced several new products for use in highway applications: 10 

3M Internally Illuminated Highway Sign 

This new sign product combines the property of passive retroreflectivity with that of internal 
illumination. OLF is used to distribute the light evenly within the sign box and thereby provide 
uniform luminance of the sign face. In addition, the use ofOLF allows the light sources to be 
placed remotely at the side of the road where they may be easily maintained. The light is 
efficiently transported to the sign which is over the road. Advantages, therefore, include safer 
and more convenient maintenance allowing for the elimination of traffic diversion and delay, 
improved uniformity of sign luminance, improved performance under adverse weather 
conditions, and preferred aesthetics. 

3M Lighted Guidance Tube 

This product is a linear illumination system which provides positive guidance to motorists 
traveling along hazardous or unfamiliar roadway locations or during conditions of adverse 
visibility. This system utilizes small low-voltage light sources located approximately every 30 
meters to illuminate a continuous polycarbonate tube mounted atop concrete barriers or steel 
guard rails. The effect of providing a continuous line of light is made possible by the light 

JO D. L. Strand and K. G. Kneipp, XII International Road Federation World Meeting, Madrid, 
Novel Uses of 3M Optical Lighting Film in Roadway Applications, May, 1993. 
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transport properties ofOLF. In addition, because of the directionality of the light which exits, it 
is possible to provide different colors to the light exiting the tube when viewed from either 
direction. 

3M Pole Light 

The 3M Pole Light uses OLF to transport light from a lamp located at the base of the pole to the 
top where it is redirected back to the ground in the desired IIfootprintll by a unique reflector. 
This product is also made possible by the efficient light transport properties of OLF, and 
provides advantages of easy and convenient light source maintenance and improved safety due to 
the location of all electrical components at the base of the pole or below grade. 

In addition to these product applications being pursued directly by 3M, a number of other light 
fixture manufacturers purchase OLF and fabricate an array of novel fixtures which capitalize on 
the film's benefits. The following summary of selected applications is not intended to be a 
complete listing, but rather a sampling which shows the wide variety of products which have 
been developed based on this technology: 

Thin Light Boxes 

Thin boxes for backlit advertising and graphics display applications have been built by several 
manufacturers. The use of OLF permits uniform luminance of detailed sign graphics with a 
thinner box profile than would be possible using standard construction techniques. It allows for 
lamps to be located in positions where they may be easily maintained. Typical techniques for 
construction have been described. II 

Explosion EnvironmentIHazardous Lighting 

The light transport properties of OLF permit the construction of fixtures where the lamp, ballast, 
wiring, and associated electrical components may be safely located outside of hazardous or 
sensitive areas. All maintenance of the fixture is done in easily accessible, safe locations, and 
the light is delivered into the room where it is needed. This type of fixture has been used in 
solvent rooms and other similar environments, in food processing plants, health care MRI rooms, 
and over swimming pools where lamp maintenance is difficult and expensive or where 
elimination of electrical components is necessary. 

Tunnel Lights 

OLF fixtures for application in tunnels offer the advantage of greatly reduced number of lamps 
compared to fluorescent fixtures which they typically replace. Reduced and easier maintenance 
in these difficult-to-access locations are major benefits to the end-user or maintaining authority. 

Building Highlighting 

Long lines of light located atop buildings have been used to highlight the building design and 
create desired architectural effects. With OLF, it has been possible to design such fixtures with 

113M Optical Lighting Film Application Bulletin, Thin Light Box, March, 1990. 
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the light source located inside the building for ease of maintenance. In addition, changing colors 
or creating other desired visual effects is made easier than with other lighting designs. Buildings 
which incorporate such lighting systems may be found in several locations in North America, 
Europe, and Japan. 

Emergency Vehicle Interior Lighting 

OLF fixtures create more uniform illumination and eliminate the glare often associated with 
point sources. Because light sources which provide better color rendition may be used, patient 
care, as well as comfort, is improved. 

Workstation Task Lighting 

The use of OLF in fixtures located over workstation or desk areas allows the light to be directed 
so that undesirable glare and reflections from shiny surfaces are eliminated. This improves 
worker comfort and productivity. 

The products which have been briefly mentioned here all capitalize on the unique light transport 
and distribution properties ofOLF. These properties have led to a variety of benefits, including 
fixtures with unique designs, improved safety, reduced operation cost, and improved 
maintenance due to the use of longer-life lamps and the ability to locate them for ease of 
replacement. 

IN-USE FIXTURE DESIGN AND PERFORMANCE CONSIDERATIONS 

The environment in which a light fixture is to be used dictates many of the details of its design. 
For example, fixtures which are intended to be used in exterior locations must meet design and 
performance criteria which do not apply to interior fixtures. Exterior fixtures are usually 
constructed to different specifications using different materials than fixtures which will not be 
subjected to harsh exterior environments. The fact that fixtures intended for use in specific 
applications must each be designed and constructed to meet the unique requirements of that 
application has been a key factor limiting the number and types of widely different fixture 
designs and end-use applications which we in 3M have elected to pursue. We recognize that the 
effort to produce an effective fixture design, and the investment required to prove that the design 
functions acceptably in the intended environment, are often substantial. Some of the factors 
which must be considered in the design and operation of any new OLF-containing prism light 
guide are outlined below: 

Service Access 

The design freedom which often results in OLF fixtures can make maintenance of the light 
sources much easier and more convenient. It is important to design the fixture so that optimum 
advantage may be taken of this benefit by designing the proper location and type of service 
access for ease of lamp replacement and electrical maintenance. 

Effect of Heat 

OLF-containing fixtures often incorporate HID sources which provide light which is properly 
collimated for use in a prism light guide. However, these source also produce heat, which, if not 
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properly dissipated, can result in fixture overheating and ultimate destruction of certain 
components. Plastic components are susceptible to damage from excessive heat. For example, 
polycarbonate aLF will suffer film distortion at temperatures above about 265°F; acrylic aLF 
will be damaged at temperatures above about 190° F. It is necessary, therefore, to place hot 
sources in appropriate locations and to use suitable venting and cooling techniques to insure that 
these films and other heat sensitive components will not be damaged. 

EffectofUV 

Plastic resins, such as polycarbonates or acrylic materials, are often stabilized to the damaging 
effects ofUV radiation by the use of certain additives. The polycarbonate and acrylic polymers 
used to produce aLF, however, do not incorporate such stabilizers. This is because stabilizing 
additives also absorb sufficient light in the visible portion of the spectrum such that the optical 
efficiency of the resulting film will be too low. As a result, because UV radiation will cause 
undesired resin yellowing, crazing, and cracking, it is necessary to use a filter between the light 
source and aLF material. While the acrylic film is less susceptible to damage from UV 
exposure, unstabilized polycarbonate is known to yellow when exposed to radiation of less than 
337 nm. 12 An effective filter glass for use with polycarbonate is UVILEX 390 (Schott Glass). 

Weatherability 

While it is necessary to protect the aLF from the damaging effects ofUV radiation, prism light 
guides which are used outdoors will be subject to the effects of sunlight. The aLF must be 
contained in a housing which does not allow sunlight to shine directly on the film. This may be 
done by using metal or stabilized plastic components for the outer housings. 

Effects of Dirt and Moisture 

In addition to protection from sunlight, the optical components must be protected from excessive 
dirt and condensing moisture, both of which will destroy the optical performance. Thus, fixtures 
containing aLF are often sealed to eliminate concerns from dirt and moisture. In some cases, 
where sealing is impractical, such as in the case of a large sign, it is necessary for the entire 
structure to breathe. Filters to keep out dust, insects, or other debris, are often used at the 
breathing ports. 

Hostile Environments 

While any fixture which is used outdoors is subject to the effects of sunlight, temperature 
extremes, and moisture, certain environments are particularly hostile and deserve separate 
mention. For example, products such as the 3M Lighted Guidance Tube, tunnel lights, and 
certain other outdoor fixtures are subjected to occasional high pressure water, detergent, or even 
steam cleaning. It is important that the actual operating environment be considered in fixture 
design and selection of components. 

12 C. A. Pryde, ACS Polymer Preprints, Volume 25, Number 1, Weathering o/Polycarbonates - a 
Survey o/the Variables Involved, p. 52-53, April, 1984. 
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OTHER PRISMATIC MATERIALS AND THEIR APPLICATION 

In addition to OLF, 3M has developed other prismatic film materials for redirecting light. An 
important example of such a product is a film which we call "2370" polycarbonate prismatic 
film. The structure of this film is similar to that of OLF shown in Figure 2, except that the prism 
angles are 70° instead of 90°. The way in which this film interacts with incident light is quite 
different. When the film is positioned so that the groove direction is perpendicular to the 
direction that the light is traveling within a hollow light guide, light which strikes the groove side 
of the film at a grazing angle (less than about 20°) will be bent 90°. The 2370 film has found use 
in helping to achieve uniform light extraction from our internally illuminated signs, as well as in 
redirecting light in a preferred direction from other hollow light guides. OLF and 2370 are often 
used together in order to achieve desired light control. The 2370 film is manufactured in a 
microreplication process similar to OLF. 

Another important prismatic material is the 3M Solar Optical Products Daylighting Panel which 
incorporates a Fresnel lens system to collect light energy from the brightest area of the sky and 
redirect it vertically into the interior of a building. The bulk of available natural light varies with 
the time of the day as well as time of year. Conventional skylights and windows are only 
partially effective since they cannot constantly redirect the brightest portion of the sky into the 
desired areas of the building. 3M Daylighting Panels also soften direct sunlight without 
reducing reflective efficiency while still providing unique light collimation properties. Energy 
requirements for heating and cooling are substantially reduced. 

In a typical installation, such as the one at the 3M Austin, Texas Center, the panels are mounted 
in the roof area of the building. A primary panel collects and concentrates direct solar radiation 
and redirects the light to a secondary panel. The secondary panel is positioned such that sunlight 
is directed vertically downward into the building regardless of the time of year. Due to its large 
collection efficiency, the system works well even on cloudy or hazy days. The construction and 
performance of the 3M Austin Center installation has been previously reviewed. 13 

Another application example for daylighting panels is at the Minnesota Zoo Tropics Building. 
The building previously utilized ordinary skylights to provide natural light for plants and animals 
located between 9 and 23 meters below the roofs surface. During the winter months, plants 
were being lost because most of the light did not transmit through the skylight due to the low sun 
angle. 3M installed daylighting panels on the north side of each skylight to capture the low 
angle sun and reflect it down into the building. This made the distribution of sunlight more 
uniform throughout the year, and provided light required for greater plant growth during the 
winter. 

The ability to make the level of light delivered to the interior of a building more uniform 
throughout the year has been demonstrated by placing daylighting panel louvers on a greenhouse 
in Flagstaff, AZ. In the winter, low angle sunlight will be captured by one section of the louver 
and directed through the roof into the greenhouse. When the sun's altitude increases during the 
summer, the resultant sun's rays will reflect off a second section of the louver to reduce the 
transmitted sunlight. Use of these daylighting panel louvers will provide greater growing 
capacity for a conventional greenhouse throughout the year and reduce winter time heating and 

J3 Architecture, August, 1990, p. 90. 

316 



summer time cooling energy requirements. 14 Details on these daylighting installations may be 
obtained from 3M. IS 

Still another application of the Fresnel lens technology is in prismatic materials for solar 
concentrator applications. Using the 3M lens film, sunlight is focused on a strip of active solar 
material. This increases the efficiency of the overall collection system, reduces the amount of 
active cell material required, thereby eliminating the need for broad flat plates of active cells. 
The performance of a system which has been installed atop the parking garage at the 3M Austin 
Center has been described. 16 

SUMMARY 

3M prismatic films are finding increasing utility in the construction of new hollow light guide 
fixtures which capitalize on the unique ways in which these novel materials interact with light. 
Often, the resulting systems provide features and end-user benefits which are difficult or 
impossible to achieve by alternative design or construction methods. It is apparent that the 
benefits may be applied to a wide variety of end-uses, and that the resulting products being 
developed will find utility in many diverse market areas. 

With the recognition that creating hollow light guide products and systems requires a substantial 
resource investment, and because of an existing prominent position in the traffic management 
market, 3M has decided to focus its current efforts in the development, manufacture, and 
distribution of value-added products for this market. 

However, through the sale of these prismatic films, a variety of companies have developed and 
are manufacturing and distributing other unrelated hollow light guide products which capitalize 
on the unique capabilities of these films in controlling and distributing light. There appears to be 
little doubt that the potential applications of this technology will grow both in numbers as well as 
in diversity. 
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PRINCIPLES AND CHARACTERISTICS OF OPTICAL FIBERS 

Atikem Haile-Mariam 

Coming Inc., 27 W. Market St., ME-R3-03-1, Corning, NY 14831 

DEFINITIONS 

Core, Cladding, Coating 
• An optical fiber is made of three sections: 
• The core carries the light signals 
• The cladding keeps the light in the core 
• The coating protects the cladding 

Cladding 

Coating 

How an Optical Fiber Works 
• An Optical Fiber works on the principle of Total Internal Reflection 
• Light rays are reflected and guided down the length of an optical fiber. 
• The acceptance angle of the fiber determines which light rays will be guided down the 

fiber. 

319 



CORE CHARACTERISTICS 

1. The diameter of the light carrying region of the fiber is the "core diameter." 
2. The larger the core, the more rays of light that travel in the core. 
3. The larger the core, the more optical power that can be transmitted. 
4. The core has a higher index of refraction tha:n the cladding. 
5. The difference in the refractive index of the core and the cladding is known as delta. 

STANDARD OPTICAL FIBER SIZES 

2DOmfcron. 

100 micron. 
50 microns 

125 microns 125 microns 140 mlcron8 

500 microns 

SPECIALTY ILLUMINATION FIBER 

Fiber Bundle Large Core 
Plastic Optical Fiber 

5000 micron 5000 micron 
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Total Internal Reflection 
Total Internal Reflection occurs when any ray traveling from a medium with a high 
refractive index is incident on a boundary of a lower refractive index at an angle greater 
than or equal to the critical angle. 
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The trall5miUed ray is bent away from the normal Total internal reflection: a i > a C 

(From: Michael Brininstool, 1993, Fiber Optic Design Principles Tutorial, ROV93 Conference 
San Diego, CA.) 

Numerical Aperture (NA) 
1. Measure of the acceptance angle of light that a fiber can support through total 

internal reflection. 
2. Designed into the fiber by the difference in indices of refraction between the 

core and the cladding material. 
Ray Tracing in Optical Fiber 

_ -l- ) 

NA - line ..... ~-------------» I 

COl. 

O.o1.hnS 

Ray I: Light is coupled into fiber since ray is within acceptance cone of fiber. 

Ray 2: Light is at the maximum acceptance angle of fiber and is coupll:d. 

Ray 3: Light is radiated out of fiber since ray is outside acceptance cone of fiber. 

(From: Michael Brininstool, 1993, Fiber Optic Design PrinciplesTutorial, ROV93 Conference 
San Diego, CA.) 
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FIBER PERFORMANCE 

The efficiency of light transmission of optical fibers depends on fiber design and physical 
environment. 

FIBER MATERIAL COMPOSITION 

1. Coming optical fiber is an amorphous noncrystaline material made of pure fused silica and 
germania dopant. 

2. Plastic optical fiber is generally made of a polymethyl methacrylate (p:MMA). 
3. Experimental fibers are made of other materials such as sapphire. 
4. Coatings are usually proprietary to the manufacturer but are usually acrylate or polyimide 

based. 
5. The primary function of coating is to protect the glass fiber from flaws. 

EXAMPLES OF SPECTRAL ATTENUATION n~ OPTICAL FIBER 
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100 . 
~ 
1 

50 
500r-----------------------------~ 

30 

20 \ 
\ 
\ 

10 \ 

E \ ... \ ..,. 5 '\ cD 
~ \ 

3 \ U1 
U1 2 \ 0 
..J " " \. 

\. 
"-

0.5 "-RAYLEIGH '\. 
0.3 SCATTERING LOSS "- A -<4 

IN Si O2 
"-

0.2 "-
"-

"-
O.f 

0." 0.6 0.8 1.0 1.2 1.4 

WAVELENGTH (flom I 

"-
16 1.8 

300 

Loss 
(dB lanl 

322 

2 

500 

C·H vlllraaonl' 
allsorpuon 

600 

WIVl!lllngll1 (nm) 

·'n'rare<!· 
Jllsorptlons 

(From Product Information Sheet: 
Mitsubishi-Rayon Co. Inc.) 

700 



COMPARISON OF GLASS AND PLASTIC OPTICAL FIBER 

Characteristics Glass Plastic 

Fiber core diameter, microns 50-200 250-5000 
clad diameter 125-500 450-6000 

Attenuation at 650 nm, dBIkm 4.0 150* 

Maximum transmission distance 1,500 .53 
for 75% power loss, meters 

Usable spectral range UV,VIS,IR VIS 

Numerical aperature .1-.4 .3-.65 

Acceptance angle (cone) 35 degrees 60-75 degrees 

*Current commercial limits, not theoretical limits 

PHYSICAL ENVIRONMENT 

Bend Induced Attenuarion 
1. Macrobending 
2. Large bends in an Optical Fiber will shed rays of light. Power is lost at the bend. 

Macrobendlng Attenuation Power 

1. Microbending 
• Small axial bends/bumps along the fiber axis that cause mixing or loss of 

power. This can be induced by fiber jacketing, 
cabling or environment. 

Mlcrobendlng Attenuation 

Sheddingo(power ~ 

---fftt.~~=~_=~-@ 
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Cable Design 
1. Performance of fibers in cables depends on the following components: 

strength members (kevlar, steel) 
fill compounds 
tight buffer vs loose tube 

2. TemperaturelHumidity 

Specifications 

The performance of fiber/cable depends on the extent to which temperature and 
humidity produce microbending. 

3. Temperature (Celsius) 
Standard Glass Optical Fiber - -60 to +85 degrees 
Specialty Glass Optical Fiber - -60 to +200 degrees 
Plastic Optical Fiber -40 to 85 degrees 

4. TemperaturelHumidity 
Standard Glass Optical Fiber - -10 to +85 degrees and 4% to 98% RH 
Specialty Glass Optical Fiber - -10 to +85 degrees and 4% to 98% RH 
Plastic Optical Fiber - max 85% humidity for 2000 hours 

TECHNICAL ISSUES THAT MERIT FURTHER INVESTIGATION 

1. Cost effective diffusers and concentrators 
2. Cost effective coupling techniques between light sources and fibers 
3. "Multi-use' fibers 

SUMMARY 

1. Optical fibers works on the principle of total internal reflection. 
2. Optical fibers can be used at various wavelengths including illumination applications. 
3. Factors affecting the performance of fiber include material composition, geometry, and the 

physical environment. 
4. Fiber/cabling can be optimized for the specific application and environment. 
5. Manufacturing processes are available for producing glass fibers of differing refractive 

indices and diameters. 
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USE OF DIFFUSIVE OPTICAL FIBERS FOR PLANT LIGHTING 

T. Kozai*, Y. Kitaya*, K. Fujiwara*, S. Kino** and M. Kinowaki** 

* Laboratory of Environmental Control Engineering, Department of Bioproduction Science, 
Faculty of Horticulture, Chiba University, Matsudo, Chiba 271 Japan 

** Topy Green Ltd., 3-3-1 Shinsuna, Kotoh-ku, Tokyo 136 Japan 

INTRODUCTION 

Lighting is one of the most critical aspects in plant production and environmental research with 
plants. Much research has been repeated on the effect of light intensity, spectral distribution of 
light and lighting cycle, but comparatively little research done on the effect of lighting direction 
on the growth, development and morphology of plants (Hart, 1988). 

When plants are grown with lamps above, light is directed downward to the plants. Downward or 
overhead lighting is utilized in almost all cases. However, downward lighting does not always 
give the best result in terms of lighting efficiency, growth, development and morphology of 
plants. 

Kitaya et al. (1988) developed a lighting system in which two rooting beds were arranged; one 
above and the other under fluorescent lamps. Lettuce plants grew normally in the lower bed and 
suspended upside-down under the upper bed. The lettuce plants suspended upside-down were 
given the light in upward direction (upward lighting). No significant difference in growth, 
development and morphology was found between the lettuce plants grown by the downward and 
upward lighting. Combining upward and downward lighting, improved spacing efficiency and 
reduced electricity cost per plant compared with conventional, downward lighting. From the 
above example, when designing a lighting system for plants with lamps more lighting direction 
should be considered. 

In the present study, a sideward lighting system was developed using diffusive optical fiber belts. 
More higher quality tissue-cultured transplants could be produced in reduced space with 
sideward lighting system than with a downward lighting system. An application of the sideward 
lighting system using diffusive optical fiber belts is described and advantages and disadvantages 
are discussed. 

'Normal' and 'Diffusive' Optical Fibers and Diffusive Optical Fiber 'Belts' 

Normal optical fibers. A 'normal' optical fiber is a filament-shaped photon (light) guide, made of 
dielectric material, such as glass or plastic. The fibers usually consists of a single discrete 
optically transparent transmission element consisting of a cylindrical core with cladding on the 
outside (Figure la; Weik, 1989). The refractive index of the core has to be higher than the 
cladding for photons to remain within and propagate in the fiber. 'Normal' optical fibers are used 
to transmit photons as signals or energy carrier for a long distance with minimum attenuation 
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and disturbance. 

Diffusive optical fibers. On the other hand, a 'diffusive' optical fiber is used as a thin line light 
source. For this purpose, the cladding of a 'normal' optical fiber is chemically eroded (scratched) 
to some degree so photons come out through the cladding gradually along the fiber (Figure 1 b). 
Photons are sent through either or both ends (cross section of the core) of the fiber. The diffusive 
optical fiber used in the present experiment is made of acrylic and the refractive indices of the 
core and cladding are, respectively, 1.496 and 1.402. Thus, the fibers are considered to be an 
apparent light so~ce and the lamp a true light source. 

(a) Normal optical fiber 
~ : Direction of light 

(b) Diffusive optical fiber 

Fig. 1 Schematic diagram showing light transmission pathways in 'normal' and 'diffusive' optical 
fibers. 

Diffusive Optical Fiber Belts 

A diffusive optical fiber belt used in the present experiment is basically a flat belt (90 mm wide 
and 1.3 mm thick) composed of ninety diffusive optical fibers (each 1 mm in diameter) attached 
and fixed with a white (and opaque) reflective fihn on one side, with both ends of all the fibers 
bunched tightly together to make a circular cross-section (Kozai, 1991). When the light emitted 
from lamps is sent through both ends of the belt, this array of optical fibers functions as an area 
(surface) light source. The diffusive optical fiber belt is physically flexible. 

SIDEWARD LIGHTING 

Sideward Lighting System Using Fluorescent Lamps 

A sideward lighting system using fluorescent lamps was developed. Quality tissue-cultured 
(micropropagated) transplants were produced with reduced shoot length and enhanced leaf and 
root growth in limited space at lower costs (Hayashi et aI., 1992; Hayashi et aL 1994: Kitaya et 
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aI., 1994). Figure 2 shows schematic diagrams of the sideward lighting system using fluorescent 
lamps and a conventional, downward lighting system using fluorescent lamps. 

When both systems supplied with the same amount of electricity for lighting, dry weight, fresh 
weight, leaf area and stem diameter of potato (Solanum tuberosum 1., cv. Benimaru) plantlets in 
vitro in the sideward lighting treatment were 80% greater than those in the downward lighting 
treatment. On the other hand, the shoot length of the plantlets in the sideward lighting treatment 
was only one half of the downward lighting treatment (Hayashi et al., 1992; Kozai and Ito, 
1993). Tissue-cultured transplants tend to have elongated, thin stems with small leaves and few 
roots, which are undesirable characteristics of transplants. Higher quality potato transplants were 
produced in the sideward lighting treatment than in the downward lighting treatment. 

Fluorescent 

() 
() i/ 

lamps 

~~===============(~)~ 
8 

~ 

Top h ~ ~ ~ e ~idd!e e: 
~ 

Bottom ~ Cui -

~ 

ture.J1li11J. ~<l>¢> 
vessels lOOmm ~ 

Sideward lighting Downward lighting 

Fig. 2 Schematic diagram of the sideward lighting system using fluorescent lamps and the 
conventional, downward (overhead) lighting system using fluorescent lamps (Hayashi et aI., 
1992). 

Sideward Lighting System Using Diffusive Optical Fiber Belts 

A prototype of a sideward lighting system using diffusive optical fiber belts was developed for 
lighting plant tissue culture vessels (Figures 3 and 4). The main assembly of the system consists 
of two metal halide lamps, each with a reflector and a thermal filter and a pair of diffusive 
optical fiber belts (90 mm wide, 1.3 mm thick and 2.3 m long each). In this system, a 'true' light 
source is the metal halide lamps, but an 'apparent' light source is the belt. With this system, the 
space for the 'apparent' light source (between the rows of culture vessels) can be greatly reduced 
compared with the sideward lighting system, using fluorescent lamps. 
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r-------------------------------i3iinciied-fitiers-----
Diffusive optical Thermal filter 

. . 

fiber belts Metal halide lam 

.. ---------------------------------------------------

Fig. 3 Schematic diagram of the sideward lighting system using a pair of. diffusive optical fiber 
belts for plant tissue culture (Kozai et al., 1992). 

Fig. 4 Photograph of the sideward lighting system using a pair of diffusive optical fiber belts for 
plant tissue culture. 

Light emitted from the lamps and transmitted through the thermal filters is focused, using the 
reflector, at the ends of the bunched optical fibers. The transmitted light passes into the bunched 
optical fibers and is released from the entire inner surface of the belts. The outer surface with the 
white reflective film is faced out. A pair of diffusive optical belts, 8 cm apart, are placed 
vertically in parallel on the culture shelf. Plant tissue culture vessels are placed in the space 
between the belts and plantlets in vitro receive light through the side walls. 

Thermal radiation emitted by the lamp is removed Toy thermal filter before it enters the bunched 
optical fibers, and only photosynthetically active radiation (wavelength: 400 - 700 nm) passes 
into the belts. 'Actual' spectral distribution of light entering the belts is determined by the 
spectral distribution of light emitted from the lamp and the spectral transmissivity of thermal 
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filter. The light emitted from the belts and transmitted through one of sidewalls of the vessel, but 
not received by the plantlets in vitro passes through the opposite side wall of the vessel. Thus, 
increase in air temperature in the culture vessel due to the radiation from the light source was 
less than 0.5 DC (Kino, 1993). 

In application of this system, the lamps are placed outside the culture room, so not only thennal 
radiation, but also convective heat produced from the lamps can be removed outside the culture 
room, which results in a significant reduction in the cooling load of the culture room. 

Figure 5 shows longitudinal PPF (photosynthetic photon flux) distributed along the diffusive 
optical fiber belts as measured on the vertical surface, at the center of the plant tissue culture 
vessels (75 mm x 75 mm x 98 mm each), when either lamp A or lamp B or both were turned on. 
The PPF was more or less evenly distributed along the belts when both lamps A and B were 
turned on. The longitudinal PPF distribution along the belts is mainly detennined by the degree 
of erotion along the fibers. 
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Fig. 5 Longitudinal PPF (photosynthetic photon flux) distribution along the diffusive optical 
fiber belts measured on the vertical surfaces at the central points of the plant tissue culture 
vessels shown in Figure 3. 

Growth of potato (Solanum tuberosum L., cv. Benimaru) plantlets in vitro was compared using 
sideward and downward lighting systems. Leafy single node cuttings were used as explants 
without sugar in the medium. CO2 was available in the plant space through gas penneable filters 
in the culture vessel. Plantlets cultured in vitro for 28 days had significantly reduced shoot length 
and increased stem diameter in the sideward lighting treatment than in the downward lighting 
treatment. There were no significant differences in dry weight, leaf area, number of unfolded 
leaves and net photosynthetic rate per plantlet between the two treatments (Kozai et aI., 1992). 
Reduced shoot length and increased stem diameter are preferred characteristics of tissue-cultured 
plantlets for acclimatization and transplanting to ex vitro conditions. 
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PLANT GROWTH CHAMBER WITH DIFFUSIVE OPTICAL FIBERS 

A prototype of a plant growth chamber with diffusive optical fibers was developed for plant 
tissue culture and transplant production (Figures 6, 7 and 8). Eight 150 W metal halide lamps 
were installed in the lamp house and thennally isolated from the culture room to reduce the 
cooling load of the culture room. 

The culture room consisted of 12 (= 4 x 3) compartments, which are 20 cm wide, 30 cm high 
and 450 cm deep each. Thus, each compartment contained 36 (= 2 x 3 x 6) Magenta GA7 culture 
vessels (75 mm x 75 mm x 95 mm), totaling 432 (= 36 x 12) Magenta GA7 culture vessels in the 
culture room. Vertical PPF measured at the center of empty compartments averaged 
approximately 60 .umol m-2s-l

• This PPF value was too low for plant tissue culture and transplant 
production when applied on the horizontal surface. However, a PPF of 60 .umol m-2s-1 at the 
vertical surface was high enough for plant tissue culture in the present experiment. 

Front view Side view 

house iE--~~:"'--~): Control k 980 ~ Lamp house 
Hi !<~4:::50~~~: _--:V' 

•••••••• J, Culture room 

1I1111111 111111111 Unit: mm 

Fig. 6 Front and side views of a plant growth chamber with diffusive optical fibers developed 
for plant tissue culture and transplant production. 

Using the plant growth chamber, quality potato (Solanum tuberosum L. cv. Benimaru) plantlets 
were successfully cultured in vitro (Kino, 1993; Kozai et aI., unpublished). Further details are 
under study using the plant growth chamber 
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Fig. 7 Photograph of a plant growth chamber using diffusive optical fibers with the front door 
open, developed for plant tissue culture and transplant production. 

Fig. 8 Inside view of a plant growth chamber using diffusive optical fibers developed for plant 
tissue culture and transplant production. 

ADVANTAGES AND DISADVANTAGES 

Advantages of Sideward Lighting 

Advantages of the sideward lighting system over the downward lighting system for plant tissue 
culture and transplant production include: 1) enhanced space utilization by vertically stacking 
culture vessels without a significant reduction in the amount of light energy received by the 
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plantlets, 2) increased ratio of light energy received by the plantlets to the light energy released 
from the light source, since culture vessels or plantlets are placed next to the light source, 3) 
increased leaf area exposure to light, especially lower leaves of plants. Since the light is applied 
from the sides, the lower leaves remain photosynthetically active (Kitaya et al., 1994), and 4) 
sides of vessels are often more transparent to light than lids. 

Advantages of Diffusive Optical Fiber Belts 

Advantages of the sideward lighting system given above are further enhanced when diffusive 
optical fiber belts are used instead of fluorescent lamps. Additional advantages of the sideward 
lighting system with diffusive optical fiber belts for plant tissue culture and transplant production 
include: 1) reduced culture room cooling load since only photosynthetically active radiation is 
released in the culture room, and 2) an optical filter or an optimal light source such as light 
emitting diodes (LED) could be easily used with a thermal filter to obtain an improved light 
spectral distribution. The diffusive optical fiber belts could be used, as an area light source for 
downward or upward lighting systems as well as sideward lighting system. This light distribution 
system (diffusive optical fibers) could be used as an effective lighting system for algae culture in 
a tank, mushroom culture, supplementary lighting in the greenhouse, etc. 

Disadvantages and Their Possible Solutions 

In the present sideward lighting system, using diffusive optical fibers, the ratio of PAR 
(photosynthetically active radiation) energy emitted by the lamp to the PAR energy entering into 
the cross section of bunched optical fibers was low (approximately 0.2). This is mainly because 
the metal halide lamp is not a point light source and the light energy emitted by the lamp could 
not be effectively focused to the cross section of bunched fibers. Using a lamp reflector. This 
ratio should be higher than 0.8. 

However, using a microwave-powered lamp (Fusion Systems Inc., MD U.S.A.; Dolan et. al., 
1992; Krizek et. al., 1993) a point light source (9.5 mm in diameter for 500 W lamp and 30 mm 
in diameter for 3.4 kW lamp), this problem would be largely solved (Kozai and Kitaya, 1993). 

Methods of designing the lighting system using the diffusive optical fibers have not been 
adequately developed. There are many possible geometrical layouts of lamps, reflectors, thermal 
filters and the fibers. There are many design problems to be solved for further development. 

CONCLUSIONS 

A plant growth chamber with a sideward lighting system was developed using diffusive optical 
fiber belts as an 'apparent' light source. High quality tissue-cultured transplants with reduced 
shoot length and increased stem diameter could be produced with this growth chamber. 
Advantages of this lighting system include: 1) enhanced space utilization, 2) increased ratio of 
light energy received by the plants to the light energy released from the light source, 3) increased 
leaf area exposure to light, 4) reduced cooling load, and 5) reduced air and leaf temperature rise. 
A disadvantage of this lighting system is the low ratio of light energy emitted from the lamp to 
the light energy entering the diffusive optical fiber belts. 
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LIGHTING APPLICATIONS 

FILTERS & HEAT DISSIPATION 
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SPECTRAL FILTERING FOR PLANT PRODUCTION 

Roy E. Young·, Margaret J. McMahon··, Nihal C. Rajapakse··· and Dennis R. Decoteau··· 

• Agricultural and Biological Engineering Department, Clemson University, •• Horticulture 
Department, Ohio State University, ••• Horticulture Department, Clemson University 

RADIATION AND PLANTS 

In the scheme of living things, plants play the vital role of producers in the food chain that is 
crucial to all life. Animals and microbes, on the other hand, are generally consumers and/or 
decomposers of the foodstuffs produced by plants. Animals and humans utilize light from a 
portion of the electromagnetic spectrum radiated by the sun for 'vision' to enable transfer of 
information that relates shape and color of objects and perceives position and motion. For 
plants, however, light ~s not only a medium for information transfer; it is also a medium for 
energy transfer that enables the crucial processes of photosynthesis and photomorphogenesis. 
From light, plants may not be able to 'see' objects and to guide motion, yet they can perceive 
intensity, direction and spectral composition of radiation, can keep track of time and can adjust 
their biological processes to optimize their capacity for survival within the environment in which 
they are placed. Consequently, it can be surmised that plants have their own form of 'vision' 
related to the medium of light. 

Both plants and animals have one general commonality in their perception of light. They both 
are sensitive primarily to the 400 to 700 nm wavelength portion of the electromagnetic spectrum. 
This is referred to as the visible spectrum for animals and as the photosynthetically active 
radiation (PAR) spectrum for plants. Within this portion of the spectrum, animals perceive 
colors. Relatively recently it has been learned that within this same spectral range plants also 
demonstrate varying responses at different wavelengths, somewhat analogous to the definition of 
various colors at specific wavelengths. Although invisible to the human eye, portions of the 
electromagnetic spectrum on either side of the visible range are relatively inactive 
photosynthetically but have been found to influence important biological functions. These 
portions include the ultraviolet (UV ::::280-400 nm) and the far-red (FR::::700-800 nm). 

The basic photoreceptor of plants for photosynthesis is chlorophyll. It serves to capture radiant 
energy which combined with carbon dioxide and water produces oxygen and assimulated carbon, 
used for the synthesis of cell wall polysaccarides, proteins, membrane lipids and other cellular 
constituents. The energy and carbon building blocks of photosynthesis sustain growth of plants. 
On the other hand, however, there are other photoreceptors, or pigments, that function as signal 
transducers to provide information that controls many physiological and morphological 
responses of how a plant grows. Known photomorphogenic receptors include phytochrome (the 
red/far-red sensor in the narrow bands of 655-665 nm and 725-735 nm ranges, respectively) and 
"cryptochrome" (the hypothetical UV -B sensor in the 280-320 nm range). Since the USDA 
team of W. L. Butler, S. B. Hendricks, H. A. Borthwick, H. A. Siegleman and K. Norris in 
Beltsville, MD detected by spectroscopy, extracted and identified phytochrome as a protein in 
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the 1950's, many other investigators have found evidence of its control functions in plants. 
Considerably less, however, is knmvn about the yet non-isolated cryptochrome. 

The information-transferring roles of photoreceptors in plants at specific spectral ranges quite 
naturally stimulated plant scientists and engineers to consider physically manipulating light to 
achieve desired physiological and morphological characteristics. One way to manipulate light is 
to filter it through materials that selectively transmit portions of the sun's spectrum in and near 
the PAR range. 

NATURALLY FILTERED RADIATION 

Radiation from the sun is naturally filtered in numerous ways before it reaches plants at the 
earth's surface. Approximately 30% of the sun's radiation actually never penetrates the earth's 
atmosphere but is reflected back into space by clouds and other particles. This is primarily the 
ultraviolet part of the spectrum. About 20% evaporates water to form clouds. Slightly less than 
50% is converted into heat and reradiated into outer space as infrared radiation. Only about 
0.02% of the sun's energy is actually utilized by plants. 

Another interesting fact is that numerous determinations of daylight spectral distributions have 
consistently indicated that the red to far-red ratio (RIFR ratio) is remarkably constant. Whenever 
the solar angle is greater than 10°, the RlFRratio averages 1.15 ± 0.02. Although clouds and 
weather conditions reduce the intensity (quantity) of radiation as much as tenfold, they virtually 
have no effect on RlFR. This remarkable 
constancy of RlFR in daylight affords a 
standard value against which natural 
radiation, modified by spectral filtering 
techniques, can be compared. Virtually no 
natural terrestrial situations permit the RlFR 
ratio to go higher than the 1.15 daylight 
value. 

Diurnal fluctuations predictably occur in 
daylight spectral distributions across the 400-
800 nm range at fixed, short time intervals 
during the day (Hughes et al, 1984). Two 
primary fluctuations were observed as the 
solar angle diminishes toward dawn and dusk 
when the proportion of direct versus diffuse 
radiation declines, Figure 1. First, and more 
markedly, there is a pronounced relative peak 
in the blue (Bz400-500nm) region. 
Secondly, since direct beams traverse a 
longer path through the atmosphere at this 
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Figure 1. Light quality surface for unshaded 
daylight at Sutton Bonington, UK on 7 July 1981 
(Hughes et ai, 1984). 

time of day, atmospheric absorption and scattering is increased. Thus shorter wavelengths are 
depleted and a small, yet measurable, drop occurs in the R:FR ratio. This striking rise in the B 
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level at dusk could suggest that a photoreceptor in this range acts to detect the end of daylight. 

In the canopies of plants, vegetation absorbs R and is relatively transparent to FR. Densities and 
orientations of crop canopies, presence of competing plants and residues on the ground and 
heliotrophic movement of leaves can all contribute to far-red reflection patterns which may 
induce crop plants with fewer branches and longer internodes (Kasperbauer, 1987). 
Consequently, there can be major reductions in the RJFR ratio within plant canopies. Total 
irradiance may be reduced by a factor of 100 below the canopy compared to direct sunlight 
throughout the spectrum with the exception of the far-red (Smith, 1986). Therefore, canopy 
shade is a natural filter that can greatly alter the RJFR spectral composition and, subsequently, 
the photoreceptor response of shaded plants. 

Since more than half of the plant life on the earth is underwater, it is worthy of note that light 
scattering and absorption by water itself and by dissolved molecules or suspended particles can 
alter light quality underwater. For example, at depths of one to five meters, water may have 
strong absorption bands at 730 nm (FR) and in the near IR. Thus, with increasing depths, 
radiation is effectively 'compressed' into a narrower band of wavelengths toward the lower end 
of the PAR, often peaking near 500 nm. Large increases in R:FR can occur with depth 
underwater. Shading vegetation, however, can greatly reverse this trend within a water column. 

Diurnal fluctuation at dawn and dusk, densities, heliotrophic movements and orientations of 
plant canopies and underwater attenuation are the primary natural modifiers oflight quality. 
Since surprisingly large amounts of light may penetrate some soils to depths of seed germination 
and seedling growth, it may be worth noting that the predominant impact of soil on light quality 
is a substantial attenuation ofB and a decrease in RJFR. 

FILTERING OF RADIATION 

Sheltered plant environments such as controlled environment chambers and greenhouses filter 
radiation by virtue of the lamps which they utilize and the materials from which they are 
constructed. 

Spectral distributions of lamps generally provide poor duplication of solar radiation. Traditional 
combination use of fluorescent plus incandescent lamps in controlled environments typically 
provide no more than one-third the photosynthetic photon flux (PPF) levels offull sunlight. 
Various high-intensity discharge (HID) lamps can increase PPF levels in controlled 
environments. Barrier materials such as glass, Plexiglas (acrylic) and water are usually placed 
between the lamps and the growing area to provide ventilation of the lamp space for removal of 
heat. Bubenheim et al. (1988) observed that spectral compositions (in the 400 to 800 nm range) 
produced by any of several lamp types tested were not significantly changed by filtering through 
any of these barrier materials. The dry-tempered, 4 mm glass and the 5 mm Plexiglass single 
sheet filters reduced PPF 7%. Two layers of glass separated by a 50-mm air space reduced PPF 
by 14%. Both materials filtered longwave radiation more than shortwave. Plexiglas, which is 
opaque to ultraviolet radiation, reduced shortwave radiation more than glass and removed the 
360 to 370 nm peak from a metal halide (MH) lamp. A 20 to 50 mm-Iayer of water above both 
materials reduced longwave radiation for all lamps. Water was by far the most effective filter for 
longwave radiation, reducing it to less than 10% of total incoming radiation. Unless other 
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pigments are involved, neither glass nor Plexiglas should influence photomorphogenesis because 
they do not appreciably alter light quality in the phytochrome action spectrum. 

Greenhouse Construction and Shading Materials 

McMahon et al (1990) investigated the spectral filtering properties of several greenhouse 
construction and shading materials used to reduce solar radiation reaching plants. Construction 
materials tested included single-layer glass, channelled, double-walled polycarbonate (untinted 
and tinted Lexan by General Electric Co.), channelled, double-walled acrylic (Exolite by Cyro), 
double-layered and inflated clear polyethylene films (Monsanto 602, 703 and Cloud-9 and 6-mil 
Fog-bloc by FVG-America, Inc.) and double-layered and inflated yellow polyethylene film (6-
mil Fog-bloc by FVG-America, Inc.). All materials were new and clean. Radiation 
measurements were made with aLI-COR LI-1800 spectroradiometer equipped with a LI-1800-
10 remote cosine sensor. Readings were made on cloudless, sunny days in the Spring at solar 
noon when the sun was near its zenith. Table 1 summarizes the percentage transmission of 
sunlight through different materials for photosynthetic photons (400-700) and photomorphogenic 
photons both blue (B) photons (400-500nm) and RlFR ratio (660/730). The listing of narrow
band R1FR ratios should be qualified as limited in ability to correlate consistently with all plant 
growth parameters and is shown for comparative purposes only (Rajapakse et al, 1992). At 
present, because of weaknesses of any phytochrome light quality designator (narrow-band 
RlFR, broad-band RlFR, or phytochrome photo equilibrium (<1») to correlate consistently with 
observed plant responses, the presentation of complete spectral data over a frequency range is 
probably the most useful format. PPF transmission ranged from 95% through Exolite to 44% 
through tinted Lexan. Percentage transmission ofB light were generally 3-10% lower than that 
of PPF light for all construction materials except glass where they were equal. The narrow-band 
RlFR ratio ranged from 0.95 for yellow Fog-bloc film to 1.03 for glass as normalized to 1.00 for 
unfiltered sunlight. 

Shading materials (McMahon et al, 1990) tested included liquid compounds and solid screening 
products. The liquid compounds included white latex paint and Kool Ray green (Continenal 
Products Co., Euclid, OH). They were uniformly sprayed one time until close to runoff onto a 
piece of clean glass tilted to approximate the angle of a greenhouse roof. The screening products 
included the following: black, woven fabric (55% shade Chicopee, Inc.); black, knitted fabric 
(50% shade V-J Weathershade); vinyl coated polyester fabric with aluminized pigment (80% 
shade Enduro Silver by Handlee Enterprises); green vinyl coated polyester fabric (60 % shade 
Enduro Green by Handlee Enterprises); green, woven saran fabric (63% shade Chicopee Lumite) 
and Cravo LS-7 green polyester fabric (Cravo Ltd.). Table 2 summarizes photosynthetic and 
photomorphogenic light for the shading materials. Transmission properties varied appreciably 
for these shading materials. PPF reductions, however, were within 5% of manufacturer's 
specifications for all materials. Percentage transmission of full sun PPF ranged from 21 % for 
Cravo LS-7 to 49% for V -J Weathershade. Unlike the construction materials, some shading 
materials transmitted a higher percentage of B light than PPF. For example, Cravo LS-7 
transmitted 6% more B light than PPF as a percent of full sun. On the other hand, Kool Ray 
green compound transmitted only 7% of the B compared to 35% of the PPF, or 28% less B than 
PPF. The remaining shading materials transmitted from 0 to 3% less B than PAR. The 
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photomorphogenic RlFR ratio normalized to full sunlight (1.00) ranged from 0.94 to 1.06 for all 
shading materials except for 0.18 for Cravo LS-7 polyester fabric and 0.55 for Kool Ray 
compound. 

TABLE 1. Spectral transmission properties of selected greenhouse coverings. 

Material 

Sunlight 

Glass 
Monsanto 602 

Monsanto 703 

Monsanto Cloud-9 

Fog-bloc 6 mil 

Fog-bloc 6 mil, 
yellow 

Exolite 

Lexan 
Lexan, tinted 

Photosynthetic Light 

Photosynthetic Photon Flux 
(PPF) 

(400-700 run) 
(umol·m-2·sl 

100 

93 

88 

67 

52 

68 

63 

95 

78 
44 

% offull sun 

Photomornhogenic Light 

Blue Light RedlFar-red 
(400-500 run) (660/730 nm)" 
(umol·m-2·s:l Ratio 

Normalized to full sun 

10"0 1 
93 1.03 

83 0.99 

63 0.96 

48 0.96 

64 1.02 

53 0.95 

92 0.98 

75 0.96 

38 0.96 

Non-unity values for RlFR ratios of the construction and shading materials indicate alterations of 
light quality which could potentially modify growth of plants exposed to light transmitted 
through the materials. Some plant "stretching" may be attributed to reduced light under artificial 
shading, analogous to natural filtering in plant canopies. Altered light quality, however, will 

TABLE 2. Spectral transmission properties of selected nursery and greenhouse shading materials. 

Photosynthetic Li!!ht Photomornhogenic Li!!ht 

Photosynthetic Photon 
Flux (PPF) Blue Light Red! Far-red 

Material (400-700 run) (400-500 run) (660/730 nm)" 
(umol·m-2·sl (gmol·m-2·s:l Ratio 

% offull sun Normalized to full sun 

Sunlight 100 100 1 

Kool Ray 35 7 0.55 

Paint 41 39 1.01 

Chicopee 45 44 1 

V-J Weathershade 49 49 1.01 

Enduro Silver 21 18 0.94 

Enduro Green 42 40 1.06 

Chicopee Lumite 35 34 0.96 

Cravo LS-7 21 27 0.18 

• Any current phytochrome light quality designator (narrow-band RlFR, broad-band RlFR, or phytochrome 
photo equilibrium (<1») fails to correlate consistently with observed plant responses. The presentation of complete 
spectral data over a frequency range is probably the most useful format, if available_ 
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also probably elongate internodes and cause greater plant heights. Phytochrome modifications in 
growth patterns might be particularly expected under Cravo LS-7 and Kool Ray shading 
materials. Moreover, the B light filtering characteristics of materials like yellow Fog-bloc 
polyethylene construction film and Cravo LS-7 green fabric and Kool Ray compound shading 
materials could potentially alter both photosynthetic and photomorphogenic activity in plants. 

A further observation by McMahon et al (1990) was that the construction and shading 
materialscould be grouped as non-selective and selective filters over the radiation spectrum. The 
neutrally colored (black, white and silver) shading materials characteristically transmitted all 
wavelengths uniformly (non-selectively) as illustrated by the percent spectral transmission plot 
in Figure 2 for V -J Weathershade knitted black shade fabric over 400 to 850 nm. In contrast, the 
construction materials and the green shading materials were variable (selective) filters as 
illustrated in Figure 3 for percent spectral transmission with Kool Ray shading compound. 
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Figure 2. Example of a non-selective filter using 
spectral transmission values for V -J Weathershade 
50% knitted black shade cloth. (McMahon et al, 
1990) 

Channelled Plastic Fluid-Roof Filters 
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Figure 3. Example of a selective filter using spectral 
transmission values for Kool Ray green shading 
compound. (McMahon et al, 1990) 

Channelled, double-walled acrylic and polycarbonate plastic greenhouse glazings have provided 
the opportunity to use water or liquid dyes as filtering materials contained in the hollow channels 
of the glazing. These filters have been variously called liquid optical filters (LOF), optical liquid 
filters (OLF), liquid radiation filters (LRF) and liquid spectral filters (LSF). They can both 
filter out infrared rays (heat) while transmitting PPF and can with colored liquids selectively 
transmit various parts of the electromagnetic spectrum to influence plant development. 

In the 1970's, French scientists investigated and patented both double-layered acrylic and 
glass structures with fluid flowing within an enclosure between glazing layers (Chiapale et al, 
1977; Chiapale et al, 1978). They used water and copper chloride (CuCI2) in a closed loop flow 
as well as water over infrared absorbing glass as a lower layer. Their primary interests were 
modelling energy balances. They experienced reductions in earliness and yield with tomatoes, 
probably because of limited biological considerations for depressed CO2 levels in atightly closed 
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environment. In the early 1980's, American, French, Canadian and Israeliscientists conducted 
further studies utilizing channelled plastic sheets (Benschop et al, 1980; van Bavel et al, 1981; 
Chiapale, 1981; Weichman, 1981; Sadler, 1983; Sadler and van Bavel, 1984; Tross et al, 1984). 
Benschop et al (1980) confirmed the earlier observations ofChiapale et al (1977) that circulating 
aqueous CuCl2 absorbed infrared radiation. Simulation models of energy flow in the plastic 
fluid-roof greenhouses by van Bavel et al (1981), in collaboration with Chiapale et al (1983), 
predicted 20-40% reductions in heating requirements and virtual elimination of the need for 
forced ventilation. In experiments at College Station, TX, predictions of the model were 
confirmed. A later dynamic simulation model by Sadler and Van Bavel (1984) predicted various 
temperatures in the plastic fluid-roof greenhouse within 2-3 °C and net radiations within 20-30 W 
m-2

• Tross et al (1984) confirmed close approximations of his model of an optical liquid filter 
(OLF) channelled polycarbonate fluid-roof greenhouse with a triangular, prism-shaped structure. 
A patent for specific copper chloride solutions intended for fluid-roof applications was issued in 
1988 (Navon and Gan, 1988). For a number of years, scientists (Kopel et al, 1991; Levi et al, 
1991; Zeroni et al, 1991) have been investigating plant culture in a full-scale (330 m2

), 

channelled polycarbonate LRF greenhouse in the Negev Desert in Israel. They were able to 
reduce temperatures sufficiently within the greenhouse to practice daylong CO2 fertilization 
except for a few midday hours in mid-summer when ventilation was necessary. In addition to 
circulating aqueous CuS04, the Negev project has claimed, yet not disclosed for proprietary 
reasons, a less noxious fluid dye. Pollock et 
al (1992) established temperature profiles 
over the length of a 9.8-m long by 8-mm 
thick channelled polycarbonate panel for 
various steady-state combinations of flow 
rate and inlet temperature of circulating 
CuS04-5H20 aqueous solutions. The 
primary factor for efficient cooling of a 
fluid-roof panel was adequate fluid flow rate. 

Selective filtering of light primarily to 
influence photomorphogentic responses of 
plants was demonstrated in Norway in both 
solar-exposed growth chambers and a 
production greenhouse using green (#1358), 
red (#1409 Tetrazine) and yellow (#14123 
Red 2G) dyes (all from D. F. Anstead Ltd.) 
and 2.5% CuS04 in channelled acrylic 
sheets (Mortensen et aI, 1987; Mortensen 
and Stromme, 1987). Neutral shading was 
used so that the PPF levels were similar at all 
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Figure 4. Light transmission of water with different dyes 
in the range 350 to 900 nm wavelength, pure water; ... , 
blue; 0, green; ~, yellow; *, red. (Mortensen et al., 1987) 

light qualities. The light transmission properties of these aqueous filters are shown in Figure 4. 
(Ciba-Geigy # 178) that filtered out much R but not FR and 16% w/v CuS04-5H20 which 
filtered more FR than R light. Neutral shading was used to get constant PPF levels (about 40-
45% PPF reduction) with each filter. Figure 5 summarized the light transmission properties of 
the liquid filters tested at Clemson. Table 3 compares the broad band (R=600-700 nm; FR=700-
800 nm) RlFR ratios for the liquid spectral filters used by the Norwegian and Clemson 
investigators and lists the narrow band (R=655-665 nm; FR=725-735 nm) RlFR ratios for the 
Clemson filters. 
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Plant Responses to Spectral Filters 

Mortensen and Stromme (1987) observed that the blue CuS04 filter (high R1FR ratio) reduced 
dry weight in chrysanthemum (Chrysanthemum x morifolium Ramat.), tomato (Lycopersicon 
esculentum Mill.) and lettuce (Lactuca sativa L.) compared to natural sunlight and green, yellow 
and red filters. Plant heights for chrysanthemum and tomato were reduced by the CuS04 filter 
and increased by the green and yellow filters compared to natural light. In all species except 
poinsetta (Euphorbia pulcherrima Willd.), leaf area was significantly reduced by CuS04• Green 
and yellow filters increased leaf area in tomato compared to natural light. Lateral bud breaks 
were stimulated by the CuS04 filter in chrysanthemum and tomato, but inhibited by green and 
yellow filters in tomato. CuS04 filters led to dark green leaves while green and yellow filters 
caused light green leaves in chrysanthemum, tomato and lettuce. Light quality was similar in 
three experiments at decreasing PPF levels over the period from July to October. 

McMahon et al, (1991) observed that two species of chrysanthemum (Dendranthema x 
grandiflorum (Ramat.) 'Spears' and 'Yellow Mandalay') grown under CuS04 filters had reduced 
heights, reduced internode lengths and increased chlorophyll content compared to controls 
grown under water- and/or air-filled channelled panels. Reduced B light with the red dye 
decreased chlorophyll content of pinched plants. Pinched plants under CuS04 filters and long 
days developed fewer nodes than controls because of the formation of abnormal capitula. 
Controls and unpinched plants from the other light treatments developed more nodes before 
forming similar abnormal capitula. Stem diameters and leaf areas did not differ among light 
treatments. 

TABLE 3. Broad and narrow band RlFR ratios for various liquid 
spectral filters used by Norwegian and Clemson investigators. 

RlFRRatio* 

Country Filter Broad band" Narrow band"* 

Norway Water 
CuSOl2.5%) 
Red 
Green 
Yellow 

Clemson Water 
Air 
CuSOl16%) 
Red 
Blue 

1.00 
4.10 
0.99 
0.82 
1.00 

1.05 
1.05 
7.20 
1.03 
0.70 

1.16 
1.16 
3.30 
1.16 
0.99 

* Any current phytochrome light quality designator (narrow-band 
R1FR, broad-band R1FR, or phytochrome photo equilibrium (<1») fails 
to correlate consistently with observed plant responses. The 
presentation of complete spectral data over a frequency range is 
probably the most useful format, if available. 

* R = 600-700 nm; FR = 700-800 nm 
** R = 655-665 nm; FR = 725-735 nm 

(Data from Mortensen and Stromme, 1987 and from McMahon et al, 1991) 
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Further studies of the influence of liquid spectral filters on regulation of chrysanthemum by 
Rajapakse and Kelly (1992) utilized 4,8 and 16 % (w/v) CuS04-5H20 filters in channelled 
polycarbonate panels. These filters reduced PPF from natural irradiance inside a greenhouse 
(average ::::950 Jlmol m-2 S-I) by 26,36 and 47 %, respectively. Control treatments were shaded 
with plastic shade cloth to insure equal PPF with the CuS04 filters. Following a 4-week 
experimental period, average plant heights were approximately 40% shorter and average 
internode lengths were 34% shorter than those of control plants. Reductions in plant heights and 
internode lengths were observable within one week after initiation of the experiments. Total leaf 
area was reduced by 32% and leaf size by 24% under the CuS04 filters. Specific leaf weight 
(leaf fresh weightlleaf area), however, was greater under CuS04 filters than under the control 
treatment, indicating thicker leaves. Other observations under CuS04 filters were that fresh and 
dry leaf weights decreased by 30% and fresh and dry stem weights decreased by 60%, resulting 
in increased relative dry matter accumulation into leaves and reduced accumulation in the stems. 

A similar study by Rajapakse and Kelly (1991) sought to determine the involvement of 
gibberellins in regulation of plant height under CuS04 filters. Using 6% CuS04 filters which 
reduced average PPF by about 34%, they evaluated the response of chrysanthemum to GA3 and 
daminozide. Weekly applications of GA3 increased plant height under both the CuS04 and 
control filters, but by about 20% greater under the CuS04 than under the control filter. 
Daminozide, a GA inhibitor, reduced plant height under both filters, but more under the control 
filter. Under both filters, plant height reduction caused by daminozide was prevented by GA3 
application. It appears that GA3 may be partially involved in plant height reduction under 
CuS04 filters. 

Rajapakse and Kelly (1993) also observed with the same species of chrysanthemum that, after 28 
days, cumulative transpirational water loss of plants under CuS04 filters was approximately 
37% less than of control plants under water-filled panels. Expressed as transpiration rates per 
leaf area, however, plants under both filters responded similarly, suggesting that the reduced 
cumulative water loss was a result of smaller plant sizes under CuS04 filters. Plants grown 
under CuS04 filters had slightly lower (10%) stomatal density than control plants. The size of 
individual stomata were not altered by the CuS04 filter, yet total number of stomata and total 
stomatal pore area per plant was about 50% less in plants grown under CuS04 filters because of 
less leaf area. Results such as these suggest that altering light quality might reduce water use 
and fertilizer demands in addition to controlling growth of plants in greenhouse production. 

In similar studies using the same liquid spectral filters with miniature roses (Rosa x hybrida 
'Meirutral'), McMahon and Kelly (1990) noted that plants were significantly shorter (25 to 35%) 
and had higher leaf chlorophyll (20 to 25%) when grown under the CuS04 filters (high RlFR 
ratio). Light quality treatments, however, did not affect the number of flower buds or the 
number of buds showing color. Differences in plants grown under filters deficient in B light or 
low in RlFR ratio were not observable, indicating that these light quality alterations were less 
influential in morphology of 'Meirutral' pot roses. Modifications of plant morphologies for both 
roses and chrysanthemum, as well as unpublished results with exacum, geranium and poinsetta 
were observed by McMahon and Kelly (1990) to be comparable to morphologies of compact, 
attractive, dark green plants being widely achieved commercially by the application of chemical 
growth regulators such as butanedioic acid mono (2,2-dimethylhydrazide), daminozide, B-Nine, 
Alar and uniconazole. The use of daminozide on edible crops has already been prohibited, and 
its use on other greenhouse crops is being continually scrutinized. Manipulation of light quality 
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to control plant morphology could be an attractive, natural alternative to chemical grouth 
regulators. 

Rajapakse and Kelly (1994) also investigated the influence of spectral filters on the postharvest 
quality of potted miniature roses (Rosa x hybrida 'Meijikatar'). Again they observed that CuS04-

filtered light significantly reduced plant height and internode length and increased the number of 
lateral shoots. Some seasonal variability was observed, however. CuS04 filters slightly 
accelerated flowering in early spring but slightly delayed flowering in late spring and summer. 
Total numbers of flowers were unaffected but the sizes of flowers were increased by CuS04 

filters. Leaf sucrose and starch concentrations were reduced by 40% and 65%, respectively, 
while leaf glucose and fructose concentrations were unaffected by CuS04 filters. Plants grown 
under CuS04 filters had slightly more yellow leaves than control plants after shipping at 4 or 
16 0 C. This response is probably a result of reduced carbohydrate status. 

Rajapakse et al (1993) also investigated the responses of chrysanthemums (Dendranthema x 
grandiflorum (Ramat.) 'Spears and 'Bright Golden Anne') to end-of-day (EOD) Rand FR 
exposures. At the end of 9-h light exposure inside a greenhouse, plants grown under CuS04 

filters were exposed to either a R- or FR-light treatment of 15 minutes before being placed in a 
15-h dark period. The R-light treatment was obtained inside a specially designed treatment box 
with 2.1 W m-2 in the 600-700 nm range obtained from six 40-W cool white fluorescent bulbs 
filtered through a Roscolux No. 19 acetate filter (Rosco, Port Chester, NY). Similarly, the FR 
treatment was obtained with 12.0 W m-2 in the 700-800 nm range obtained from two internal 
reflector incandescent bulbs filtered through a polyacrylic sheet of cast acrylic No. 2711 dark red 
filter (Rohm and Haas, Bristol, PA). EOD light treatments were given for 21 consecutive days. 
Non-EOD-treated plants remained in the growth chambers and were covered with black cloth 
during the 15-h dark periods. As observed in other experiments, light through CuS04 filters 
significantly reduced plant height, internode length and stem dry weight. Exposure to EOD-FR 
reversed the reduction of plant height, internode length and stem dry weight by CuSO 4 filters to a 
level comparable with plants receiving no EOD treatment. EOD-R treatment reduced plant 
height and stem dry weight of 'Bright Golden Anne' plants grown under the control filter, but 
had no effect under the CuS04 filter. EOD-FR treatment did not significantly alter plant height 
and stem dry weight under the control filters. In 'Spears' plants, EOD-R reduced stem dry weight 
under control filters but did not reduce stem or internode elongation. These results suggest that 
phytochrome may be involved in controlling plant response under the CuS04 filter. There is 
evidence, however, to suggest that an additional mechanism may be influencing stem and 
internode elongation. 

Additional, non-liquid spectral filter experiments at Clemson have investigated EOD-R and -FR 
treatments of watermelon (Citrullus lanatus (Thunb.) Matsum & Naki cv.Sugar Baby) and 
tomato (Lycopersicon esculentum Mill. cv. Mountain Pride). Decoteau and Friend (1991) used 
the same R- and FR-treatment chambers with acetate and acrylic filters described earlier to treat 
2-week old (two true leaf stage) watermelons. After four days of EOD-FR treatment, petiole 
lengths were longer and the angle between petioles more acute than in plants treated with EOD
R or non-EOD treated (control) plants. The EOD-FR promotion of internode length, petiole 
angle and petiole elongation was reversible by immediately following the FR with R light, 
implicating phytochrome involvement in growth regulation of watermelon. Plants treated 21 
days with EOD light and subsequently grown 14 days without EOD treatment exhibited no 
residual EOD light effects on internode elongation as compared to plants receiving no EOD light 
treatments. Two-week pretreatments of tomatoes with EOD-R light before placement in a 
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greenhouse under ambient light conditions increased the number of flowers before the fIrst 
harvest but had no effect on subsequent fruit production as compared with plants receiving 
similar FR-light treatments or no EOD treatments (Decoteau and Friend, 1991). In a second 
experiment with tomatoes when cool white fluorescent lights (high in R) were used to 
supplement natural light in an unshaded greenhouse for one hour before the end of the natural 
photoperiod, Decoteau and Friend found reduced plant height and total leaf length but no 
subsequent influence on fruit production when transplanted into the fIeld. The supplemental R 
light (as provided by the fluorescent bulbs) probably affected plant growth by nullifying the 
EOD reduction in RlFR associated with the end of the daylight. These EOD treatments of plants 
suggest that light manipulation in the greenhouse may not need to be performed throughout the 
entire daylight period, but rather may be performed only for short intervals at the end of the 
daylight period. 

SUMMARY 

Research to date suggests that spectral fIltering can be an effective alternative to chemical 
growth regulators for altering plant development. If properly implemented, it can be non
chemical and environmentally friendly. The aqueous CuS04 and CuCl2 solutions in channelled 
plastic panels have been shown to be effective ftlters, but they can be highly toxic if the solutions 
contact plants. Some studies suggest that spectral ftltration limited to short EOD intervals can 
also alter plant development. 

Future research should be directed toward conftrmation of the influence of spectral fIlters and 
exposure times on a broader range of plant species and cultivars. Efforts should also be made to 
identify non-noxious alternatives to aqueous copper solutions and/or to incorporate these 
chemicals permanently into plastic fIlms and panels that can be used in greenhouse construction. 
It would also be informative to study the impacts of spectral fIlters on insect and microbal 
populations in plant growth facilities. The economic impacts of spectral fIltering techniques 
should be assessed for each delivery methodology. 
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PRINCIPLES OF LIGHT ENERGY MANAGEMENT 

N. Davis 

Environmental; Growth Chambers, Chagrin Falls, OH 44022 

This paper presents a review of several methods of minimizing the effects of the excess energy 
associated with lighting systems for plant growth. 

ENERGY IN 

ENERGY OUT 

BASIC GROWTH CHAMBER 

In these considerations the growth chamber is defmed as an enclosure in which temperature, 
humidity and light can be maintained at one or more desired levels, an envelope in which the 
energy that goes in must come out. Some of the effects of the lighting energy on chamber and 
light source performance are identified and illustrated. Six methods of dealing with the lighting 
energy are reviewed. 
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Of all of the energy relations within a growth chamber those which are related to the lighting are 
dominant. The energy associated with wall transmission and chamber operating equipment are 
not considered. Experimental requirements such as fresh air and internal equipment are not 
considered. Only the energy associated with providing and removing the energy for lighting is 
considered. 

GROWTH CHAMBER 
ENERGY INPUTS 

5% 5% 

90% 

IrS Conduction iii Blowers III lighting 

To provide radiation at any chosen level two separate factors must be considered. They are the 
means chosen to provide the radiation and the means chosen to remove the unwanted energy 
associated with that radiation. The energy associated with the delivery of the desired conditions 
must be balanced with the removal of the excess energy involved. 

In all growth chambers energy gains and losses occur at varying levels at all times. It is 
desirable to maintain the closest possible desired conditions with the minimum of control and 
energy. The less energy required to maintain the controlled environment the more easily it is 
controlled. The more easily it is controlled the more evenly it will perform. The more evenly it 
performs the less control cycle is imposed on the mean conditions. The less control cycle the 
less maintenance it will require. The less maintenance it requires the longer it will meet its 
specifications. 

Several controllable variables are available for obtaining the required radiation which if 
optimized can substantially lower the total energy required to obtain the necessary radiation and 
operate the chamber. 
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All lamps are not created equal. All lamps convert a portion of the energy they consume into 
radiation between the 400 and 700 nanometer wavelengths. This radiation varies between 10 
and 40% of the total energy applied. Radiation between these wavelengths is measured in foot
candles for purposes of vision and in moles of quanta per meter2 per second for plant growth. 
The following chart shows the relationship between a number of commercially available light 
sources. 

LAMP EFFICIENCYS 
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By choice of lamp type it is possible to reduce the input energy significantly for the same 
radiation. This choice must be consistent with the light quality that is necessary for the research 
objectives. 

Also consistent with the objective of minimizing the energy required to provide the necessary 
radiation for plant growth, is the consideration of the system used to deliver the radiation from 
the source to the plants. Measurements of growth chambers with different light delivery systems 
show efficiencies varying from 30% to 60%. This efficiency is the ratio of the radiation 
measured at the growing surface to the manufacturer's rating of the radiation emanating from a 
standard lamp. 

Selecting the most efficient light delivery system can reduce the required energy input by as 
much as 50%. 

Combining the information in the two previous charts the input energy required to deliver an 
equal amount of radiation to a growing surface may be calculated for two different delivery 
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systems. The systems selected are the ideal, or 100% of the source radiation and 40%, the high 
end of the range of most currently available growth chambers. 

LIGHTING SYSTEM EFFICIENCIES 
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The indicated Chamber Code for the nine different growth chambers and rooms is as 
follows: Area (ff)lLight Type (Fluorescent or HID)/ Watts Fr2IBarrier Type. The 
Barrier Type is 0 (none); S (single); W (water) 
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Before choosing which method to use to remove the unwanted heat of lighting the effects of two 
interactions should be understood. First the effect o.n the system's equilibrium relative humidity 
which is dependent on the amount of energy that must be removed by the primary environmental 
control system and second the effect on the light output of the source which is dependent on the 
rate heat transfer from the lamps and their resulting operating temperature. 

The equilibrium relative humidity of the system, is defined as that maximum relative humidity 
that would be maintained indefInitely in the system without the addition of moisture: This is 
established by t4e coldest part of the system which is in contact with ~e system air and becomes 
the controlling dew point. This temperature in tum is dependent on the amount of heat removal 
that is necessary by the primary environmental control system. The less lamp heat to be 
removed the less depression of the equilibrium dew point. 

i 
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While the natural dew point, or minimum coil temperature, is primarily dependent on the 
amount of heat to be removed, it can be influenced by the rate at which chamber air is 
circulated over the cooling surfaces. In general practice commercial growth chambers have 
air moving at volumes per square foot between 30 and 60 cubic feet per minute. The 
preceding chart is based on an air flow of 50 cubic feet per minute. A simple, single layer 
barrier is considered providing a generic heat load reduction of 50%. The calculations for this 
chart assume chamber temperature of23.9 C, a constant temperature cooling surface and a 
5.5 C change in air temperature across the cooling coil. Loads not considered but capable of 
influencing dew point depression include heat gain from ambient, heat loads from equipment, 
fresh air heat and moisture loads and the temperature cycle of the cooling surfaces associated 
with control systems. 
The range of lamp loads is taken from chambers built and operated over a period of years. 
The PhytoFarm in DeKalb, Illinois operated for 12 years with a light load of23 watts/ft2

, the 
walk-in chambers designed in 1961 for the Cornell University Bio Climatic Laboratory 
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project provided 200 watts/ft2 and newer chambers reaching for ever higher light intensities 
have exceeded 600 watts/ft2. 

As can be seen from the chart the effect on humidifying requirements increases rapidly as the 
lamp wattage increases in response to the need for higher light intensities. 

Another consideration of the energy management in a growth chamber relates to the. 
temperature effect of the lamp environment on the lamp's output. The following chart 
illustrates this effect on closely spaced 1500 milliamp fluorescent lamps. 
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For this chart a 36 ft2 growth chamber was operated with full lightS. The initial temperature 
was 45 C. The temperature was reduced in steps while the light intensity was recorded. At 
lamp environment temperatures greater than 15 C the lamps are operating at 15 to 23% less 
than their optimum capability. The optimum lamp environment is seldom the temperature 
required for the experiment. This temperature light relationship in growth chambers was 
recognized and described in the early work on plant growth chamber development at Cornell 
University in 1958. More detailed information is available in US Patent Numbers No's. 
3,393,728, Davis, N, 1968 and 3,604,500, Davis, N, 1971. 

To reduce unnecessary humidification, maximize the light source efficiency and minimize the 
energy required for lighting and chamber operation it is important to manage the energy 
balances within a growth chamber. 
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After minimizing the input energy by selecting the most efficient light source and the most 
efficient delivery system appropriate for the application, the issue of minimizing the heating 
effect of the light energy on the growth chamber conditions may be addressed. In general 
70% of the energy supplied to the lamps does not produce any Photosynthetically Active 
Radiation but impacts on heat removal requirements, dew point depression and lamp 
performance. 

Using High Intensity Discharge, Metal Halide and Sodium lamps rated for 400 wattS the 
energy available for removal can be illustrated. 

METAL HALIDE 
LAMP ENERGY DISTRIBUTION 

ULTRA VISIBLE 
VIOLET 24% 

3% 

33% 

INFRA RED 
40% 

76% not useful as PAR 

SODIUM 
LAMP ENERGY DISTRIBUTION 

ULTRA VISIBLE 
VIOLET 30% 

0% 

HEAT 
26% 

44% 

70% not useful as PAR 

With two of the most common light sources for supplying high light intensities in plant 
growth chambers all but 24 to 30% of the lamps wattage could be removed with out loss of 
light. Some of this light will be lost in barriers. Heat recovery, at best, has only 70% of the 
lamps wattage that can be recovered. Most secondary cooling systems can prevent up to 75% 
of this energy from entering the growing area. Temperature controlled, water filtered systems 
can prevent up to 90% from entering the growing area 
The methods for removal of this heat fall into two classifications. It may be absorbed into the 
primary environmental control system or it may be separated, to varying degrees, from the 
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primary system and removed by a secondary removal system. This secondary system may 
employ direct expansion refrigeration, cool water or air as a heat rejection medium. 

Secondary heat removal systems use some form of light transmitting barrier to isolate the 
lamp environment from the growing environment. The choice of barrier material from a 
thermal separation concern is less important than the effect on light loss and spectral altering 
that may occur with some materials. The following chart illustrates the light loss of several 
materials suitable for use in growth chambers. When used in conjunction with a film of water 
the increase in heat recovery exceeds the loss in light. 
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The following pages describe several methods for separating and collecting the unwanted heat 
in preparation for its removal by the secondary system. 

NOTE: 
This paper is intended as a check list when considering light associated heat 

management in controlled environments. Before a.pplying any of the described methods a 
careful analysis or consultation with an experienced source should be completed. 
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DIRECT ABSORPTION INTO THE PRIMARY COOLING SYSTEM 

ENERGY IN 

ENERGY OUT 
REFRIGERATION 

This system represents the base from which all energy management programs derive. The 
primary heat removal system is defined as that system which provides control of the 
environment in which the plants are located. In this case it must provide control of the 
growing environment while removing the full input energy of the lighting system. Even with 
the best choice of light sources and light delivery systems this system requires the most 
energy removal and the most humidificaton of all of the systems considered. It also represents 
the most temperature dependent lighting system in chambers which have variable lighted 
temperatures. This is the least complex, least flexible and the least efficient of the approaches 
considered for providing a controlled environment for plant growth. 
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ABSORPTION INTO A SECONDARY COOLING SYSTEM 

ENERGY IN ENERGY OUT 

ENERGY OUT 
REFRIGERAilOIl 

In systems utilizing a secondary cooling system for growth chamber heat removal some form 
of isolation of the lamps from the growing area is required. The earliest and still the most 
widely used is a single transparent membrane separating the lamp area from the growing area. 
This membrane is most frequently an acrylic plastic, obtainable as either Ultra Violet 
transmitting or Ultra Violet absorbing. It is described by its manufacturer as 'optically pure' 
and has the same transmission losses, 8%, in all thicknesses up to 1 full inch. It's losses are 
surface phenomena of 4% per surface. The early uses of this type of system employed a flow 
of outside air through the lamp area to remove the heat generated by the lamps. These 
systems, while reducing the cooling load on the growing area, were plagued with maintenance 
problems. Even good filters could not keep dust and bugs from littering the top surface of the 

. membrane. They also suffered from a lack of temperature control as the seasons changed. An 
improved system was developed and described in the Cornell work. A closed system with 
recirculating air and separate cooling coils provided a temperature controlled, dust free 
method of removing the heat from the lamp area Light intensity and chamber temperature 
were more independent variables. As much as 50% of the lamp energy can be removed from 
the growing area. With the critical temperature for fluorescent lamps being higher than the 
cooling water available from most cooling towers it is possible to remove this heat without the 
requirement for more refrigeration. More detailed information on this method is available in 
US. Patent Number 3,393,728, Davis, N, 1968. 
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IMPROVED ABSORPTION INTO A SECONDARY COOLING SYSTEM 

ENERGY IN 

ENERGY OUT 
REFRIGERATION 

As growth chamber temperature requirements became lower and relative humidity 
requirements became higher the need for better isolation between the lamps and the growing 
area became more important. At low temperatures, where refrigeration efficiencies are 
declining, any lessening of the heat load is iD;lportant. When the lights were off at high 
relative humidities and high temperatures it was possible to get condensation on the underside 
of a single barrier while at low chamber temperatures and high ambient humidities it was 
possible to get condensation on the top surface of the barrier. A double barrier reduces this 
tendency. By assuring a highly reflective housing for the lamp area surface reflection losses 
are minimized. This system is applicable for chambers requiring extreme conditions. More 
detailed information is available in US. Patent No. 3,447,595, Davis, N, 1969. 
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ABSORPTION INTO A WATER JACKETED REFLECTOR 

ENERGY IN 

ENERGYClUT 
REFRIGERATION 

ENERGY OUT 
WATER 

It is possible to remove a portion of the heat associated with lamps by enclosing them in a 
water cooled reflector. In this system a special porcelain is selected which will provide good 
reflection of radiation between 400 and 700 nanometers and transmit infrared radiation. This 
material is bonded with a good thermal joint to a backing that can be cooled by flowing water. 
The whole assembly is well insulated to maximize the amount of heat that can be collected by 
the water and minimize the heat load on the environment. The fixture can be operated with or 
without a barrier. Water temperatures can be extracted up to 220 F, depending on the flow 
rate and entering temperature of the input water. As much as 50% of the lamp wattage can be 
collected in the water depending on flow and input temperature. These fixtures have been 
made to accommodate two 400 watt HID lamps, one Metal Halide and one Sodium, in order 
to provide a blended light output. Water at cooling tower temperatures can be utilized, but 
careful filtering must be provided to prevent obstruction to the small diameter water passages 
in the cooling element. A closed water system for the fixtures is desirable. Fixtures of this 
type have been used for greenhouses, converting coolers and on growth chambers. More 
detailed information is available in US. Patent 3,869,605, Davis, N, 1975. 
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ABSORPTION INTO A PLANAR, FILTERING, SECONDARY COOLING SYSTEM 

ENERGY IN 
ENERGY OUT 

AIR WATER 

1: 

, 
ENERGY OUT 
REFRIGERATION 

A flooded barrier adds the reduction of infrared radiation to the separation of the lamp heat 
from the primary growing area. An advantage of this system lies in the ability to control the 
water temperature and bring the barrier to the chamber temperature thus completely 
eliminating any thermal exchange between the two areas. This enables the highest relative 
humidities. It also requires special consideration to achieve equilibrium dew points more than 
a few degrees less than air temperature. The flooded barrier is a combination system 
requiring both a water cooling method and an air cooling method Both water and air systems 
require stringent filtering to prevent contamination of the barrier and loss of light. While the 
system offers some performance advantages, it requires particular consideration of the support 
of the barrier, the leak sealing of the barrier to the chamber and any chemical interactions 
between the cooling water and any system components. It is not recommended where 
chamber temperatures go below freezing. Flooded barriers are most applicable for smaller 
areas where structural support and maintenance can be are readily accomplished. Light 
transmission is a function of the barrier material, the depth of the water, any induced 
turbulence on the water surface and the clarity of the water. 
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ABSORPTION INTO INDIVIDUAL, FILTERING, SECONDARY COOLING SYSTEMS 

ENERGY IN 
ENERGY OUT 

WATER 

ENERGY OUT 
REFRIGERATION 

A water jacketed lamp provides the heat collection advantages of the flooded barrier without 
some of the disadvantages. Using a closed water circuit and no secondary air the jacketed 
lamp reduces maintenance of the water and the barrier. Heat collection is consistently greater 
than 50% of the lamp wattage. The lamp water is presently restricted to temperatures between 
37 C, the upper limit for algae growth, and 60 C, the lower limit for PVC pipe softening. 
Metal ions in the water will deposit on the lamp surface and require occasional cleaning. De
ionized water is recommended for contact with the lamp surfaces. Stainless steel heat 
exchangers and pumps are required. Heat can be collected at temperatures up to 55 C. 

Lamps operating submerged in water have greater heat transfer than when operated in air. 
Lamps operating under these cooler conditions do 110t dev.elop their full wattage or light 
output. Wattage and light output are reduced by 10 to 20%. With appropriate ballasts the 
wattage and light output can be returned to standard. Operations at reduced levels result in 
operating lives approaching 50,000 hours. Both Metal Halide and Sodium H.LD. lamps can 
be operated in these fixtures. 1000 watt Metal Halide lamps require special construction. 
These fixtures can be operated in large areas without sacrifice of their heat control and 
recovery capabilities. More infonnation is available in US Patent No.4, 1996,544, Davis, 
N.B. et aI, 1980. 
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ABSORPTION INTO COMBINED SECONDARY COOLING SYSTEMS 

ENERGY IN ENERGY OUT 
AIR WATER 

ENERGY OUT 
REFRIGERATION 

A combination of air and water cooling of individual lamps represents the best of both 
systems. The lamps running in air will develop full wattage with no additional circuitry. The 
water jacket, separated from the lamp, CCl.n be operated with controls set to match chamber 
temperature when desired and eliminate any heat transfer between the lamps and the growing 
area. With the lamps insulated from the water algaecides can be used to allow water 
temperatures lower than the algae growth upper limit. The need for de ionized water is 
reduced or eliminated. With widely spaced fixtures the effect on dew point is minimized. 
This arrangement is suitable for large area illumination. The fixtures can be suspended from 
the structure internally or they can be dropped through holes in a solid ceiling. All 
connections can be made outside of the chamber. Maintenance and lamp replacement are 
minimized. More detailed information is available in US. Patent No's 3,624,380, Davis, N, 
1971 and 3,777,199, Davis, N, 1973 
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HEAT DISSIPATION IN CONTROLLED ENVIRONMENT ENCLOSURES THROUGH 
THE APPLICATION OF WATER SCREENS 

1.J. Warrington, E.A. Halligan, L.e. Ruby and K.G. McNaughton 

The Horticulture and Food Research Institute of New Zealand Ltd, Private Bag 11 030, 
Palmerston North, New Zealand 

INTRODUCTION 

Full simulation of the short-wave characteristics of daylight, including simulation of the complex 
changes in diurnal and seasonal energy fluxes and spectral energy distributions (SEDs) has 
always been a major goal in the design and operation of modem controlled environment 
chambers. Very few existing facilities, however, have the sophistication in their installed 
lighting systems which is required to achieve such conditions. Nonetheless, the adoption of high 
intensity discharge (IUD) lamps, including the use of xenon-arc lamps, has allowed advances at 
least in regard to attaining photosynthetic and total short-wave energy fluxes which can simulate 
and even exceed maximum daylight values (Bugbee and Salisbury, 1988; Warrington and 
Norton,1991). These systems also provide SEDs, especially with regard to xenon-arc lamps, 
which are closer simulations of daylight than attainable from fluorescent tube systems 
(Hartmann and Kaufmann, 1990; Seckmeyer and Payer, 1990). 

Nonetheless, no single lamp type is currently available which provides an SED identical to 
daylight and controlled environment biologists have, for many years, sought combinations of 
lamps which provide such conditions. The primary deficiency of many fluorescent and HID 
lamps is their low output in the red and near-infrared regions of the spectrum. For example, 
while daylight has a red:far-red (660:730 nm) ratio of 1.20, the R:FR ratio with metal halide 
lamps is 4.59. The corresponding calculated phytochrome photo equilibria values are daylight 
0.54 and metal halide 0.63. 

The main solution to resolving these imbalances is to provide supplementation from various 
forms of incandescent lighting. In the early application of artificial lighting to controlled 
environment research, carbon arc lamps were supplemented with 30 percent incandescent lamps 
to achieve satisfactory plant growth (parker and Borthwick, 1949). This amount of 
supplementation was adopted when cool white fluorescent tubes were introduced (Dunn and 
Went, 1959) - apparently without systematic assessment of the actual amount of supplementation 
which was either necessary or desirable (Downs and Hellmers, 1975). 

The evaluation of HID lamps in the mid to late 1960s, for their suitability in plant growth and 
development research, identified the desirability of incorporating incandescent lamps in 
controlled environment chambers in order to achieve satisfactory plant growth of many plant 
species (Warrington and Mitchell, 1976; Warrington, Mitchell and Halligan, 1976). In 
particular, stem elongation was responsive to changes in the R:FR ratio (and to the phytochrome 
photo equilibrium) in many species and supplementation of 50% of the total installed wattage 
was recommended where metal halide lamps were employed (Warrington, 1978; Warrington et 
aI., 1978). Subsequent studies, primarily motivated because of dissatisfaction with the growth 
form of some species - especially tree stem growth, illustrated that higher amounts of 
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supplementation were desirable. These amounts were as high as three-times the metal halide 
wattage or 75% of the total installed wattage. The consequent R:FR ratio was 1.15 (i.e., the 
same as daylight) and the calculated phytochrome photo equilibrium value was 0.575 (cf. 
daylight 0.54). It was not surprising, therefore, that the resultant plant growth was more 
acceptable and the plant form more consistent with that of field-grown material (Morgan et al., 
1983; Warrington et al., 1988). Nonetheless, other species are obviously much less responsive 
(Tibbitts et al., 1983). 

Compromises must be reached between those amOlmts of incandescent lamp supplementation 
considered ideal for normal plant growth and development and those deemed to be affordable, 
especially considering the low operating efficiency (photosynthetic photon flux output per 
energy input) of incandescent lamps. Nonetheless, both HID and incandescent lamps have very 
high outputs of near-infrared radiation, irrespective of installed wattage ratios, and this energy 
must be dissipated if high plant temperatures and excessive air-conditioning loads are to be 
avoided. 

HEAT DISSIPATION 

A major concern in controlled environment lighting is the dissipation of the considerable 
quantity of input energy which is converted to heat by the lamps and their control equipment. 
For incandescent lamps, only a small proportion of the input electrical energy is converted into 
light energy (photosynthetic efficacy: 0.44 !lmol S·l per watt; Tibbitts pers. comm). Although the 
energy conversion is higher for high-pressure discharge lamps (1.67 !lmol S·l per watt), these 
lamps have additional heat generated by ballasts which are essential components of the control 
circuits. Ballasts typically consume additional power equivalent to 8 - 18% lamp wattage, 
depending on lamp size. Larger wattage lamps generally have higher photosynthetic efficacy 
and proportionally lower power consumption by the lamp ballasts. Consequently, in addition to 
input energy converted to radiant energy, there are also considerable amounts of heat generated 
that must be dispersed through both conduction and convection. 

One advantage of heat which is either conducted or convected is that it can be dispersed using 
simple air-conditioning systems and such methods are widely used in controlled environment 
enclosures. In many configurations, lamp ballasts are housed in ventilated cabinets external to 
the main controlled environment enclosure. In other systems, such as the walk-in rooms at the 
National Climate Laboratory, ballasts are located "\vithin the lighting enclosure to allow ease of 
access and fault diagnosis. This, however, results in the need to ensure that the entire lamp 
enclosure is very well ventilated. 

SPECTRAL TRANSMISSION CHARACTERISTICS OF WATER 

The spectral transmission characteristics of both plate glass and water are well documented (e.g. 
Curcio and Petty, 1951). Water provides a very effective filter for controlled environment 
applications as it has almost neutral absorption over the visible and near infra-red wavebands 
(400 - 800 nm) but strong absorption in the longer wavelengths, especially from 960 to 1050 nm 
and also above 1100 nm (Figure 1). It should be noted that strong absorption occurs with water 
films as shallow as 30 mm depth. 

368 



100r=~~~~~~------~---------------. 

80 
~ o -Q) 
() 60-c 
CO 
E 
E 40 
Cf) 

c 
CO 
"-
I- 20-

O-·r----.----~~~-=~~~~--~,_--~~~ 
600 700 800 900 1000 1100 1200 1300 1400 

Wavelength (nm) 

Fig. 1. Spectral transmission ofliquid water of different path lengths (Curcio and Petty, 1951) 

These absorption characteristics can be clearly identified using scans of the spectral energy 
distributions from a high-pressure discharge lamp-based controlled environment lighting system 
where the depth of the water thermal barrier was varied between 0 and 50 mm (Figure 2). 
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Fig. 2. Spectral energy distributions taken within a controlled environment room with a plate 
glass-water barrier where the water depth was either 10, 30 or 50 mm. The measurements were 
recorded 2 m below a lighting system comprising 4 x 1000 W Sylvania 'Metalarc' plus 4 x 1000 
W Philips tungsten halogen lamps. The values used to estimate the spectral energy distribution 
in the absence of a water screen were obtained by measuring the output of one metal halide plus 
one tungsten halogen lamp mounted in an open space at the same height above the 
spectroradiometer as in the CE room tests (values presented are measured values x 4). 
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These data are further summarized in Table 1. The minor effects on both the photosynthetically
active and formative wavebands are clearly evident. Previously, Tibbitts et al. (1983) had shown 
very close agreement between measurements taken with a pyranometer which was either glass 
covered (280 - 2800 nm) or polyethylene covered (350 - 50,000 nm) which also confirms the 
very small amounts of radiation at longer wavelengths in these chambers where water thermal 
barriers are used (Table 2). 

Similar, more detailed, data are presented in Bubenheim et al., 1988 (see Table 3). In those 
studies, increasing the depth of the water was also found to reduce the transmission of both 
short- and long-wave radiation but no marked reduction in transmission occurred when water 
depth was increased from 40 to 60 mm. None of the filter materials used (water, glass and 
plexiglas) were found to change the spectral energy distributions of any lamp type in the 400 -
800 nm waveband. This is surprising as some reduction in transmission over the 700 - 800 nm 
waveband would have been expected (Figure 1). Water was clearly more effective in reducing 
the short-wave radiation component (55% of no filter value) than either a single (91 %) or a 
double glass (87%) filter, largely because the upper limit of radiation transmission for glass is 
4000 nm (Holleander, 1956) whereas for water it is 1400 nm (Curcio and Petty, 1951). 

TABLE 1. Characteristics of radiation measured in a controlled environment room with a plate 
glass-water thermal barrier where the water depth was either 10,30 or 50 mm. The 
measurements were recorded 2 m below a lighting system comprising 4 x 1000W Sylvania 
'Metalarc' plus 4 x 1000W Philips tungsten halogen lamps. 

Water 
depth 

(mm) 

10 

30 

50 

PPF 
(!lmol m-2s- l ) 

(400-700 nm) 

665 659 

656 659 

PI 
(Wm-2) 

(400-
700nm) 

142 

140 

Short-wave Blue: 
(Wm-Z) red 

(400-
1100 nm) 

217 0.45 

198 0.44 

IDetermined using an Optronics Model 740A spectroradiometer 
2Determined using an LI-190S quantum sensor 

Red: 
far-red 

1.49 

1.61 

3Determined using an LI-200SA pyranometer sensor (note limited waveband) 
4Ratio of 410 - 500: 610 - 700 nm (value without thermal barrier: 0.45) 
5Ratio of 660 : 730 nm (value without thermal barrier: 1.69) 
6Value without thermal barrier: 0.60 
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Radiation filtered by a plate glass-water thermal barrier, therefore, has a higher proportion of 
photosynthetic irradiance in the total short-wave component than unfiltered radiation. In 
daylight, this ratio has been variously determined to be between 0.47 and 0.49 (e.g. Stanhill and 
Fuchs, 1977). Bubenheim et al. (1988) found, with metal halide lamps, that the PI:short-wave 
ratio was 0.37 where no filter was used and 0.67 with a water filter (Table 3). Similarly, the 
ratio changed from 0.49 to 0.71 with high-pressure sodium lamps. Data from Tibbitts et al. 
(1988), examining the same two lamps, determined PI:short-wave ratios under the water filter to 
be 0.76 and 0.84, respectively. Hence, in addition to limiting the upper wavelength limit to 
approx. 1400 run, the use of the water barrier also leads to a marked shift in the PI:short-wave 
ratio with resultant values being somewhat different to daylight. The significance of these 
differences in ratio values to plant development is largely unexplored. 

TABLE 2. Influence of a plate glass - water thermal barrier on radiation characteristics from a 
range of HID lamp types (from Tibbitts et al., 1988). 

Sodium 

Sodium & metal 
halide 

Metal halide 

Metal halide & 
tungsten 
halogen 

PPF 
(/lmol m-2s-1) 

(400-
700 run) 

7081 7042 

702 698 

712 708 

711 705 

PI 
(Wm-2) 

(400-
700 run) 

1373 

143 

152 

149 

IDetermined using an LI-190S quantum sensor 

(280-
2800 run) 

1644 

182 

200 

217 

2Determined using an Optronics Model 740A spectroradiometer 
3Determined using a LI-190SE radiometric sensor 

(350-
50,000 run) 

1755 

186 

209 

228 

4Determined using a Swissteco pyranometer with a quartz glass dome 
5Determined using a Swissteco pyranometer with a polyethylene dome 
All measurements recorded 2 m below a plate glass - water thermal barrier 

Phytochrome 
photo-

equilibrium 

0.69 

0.66 

0.63 

0.61 

In agreement with the data of Tibbitts et al. (1983), Bugbee et al. (1988) generally found only 
small differences between total and shortwave radiation fluxes where water barriers were used. 
However, in the absence of barriers, or where water is not included in the filter, the amount of 
long-wave radiation reaching the planting surface can be considerable (Table 3). A high 
proportion of this long-wave component originates from the operating temperature of each lamp 
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reflector although all surfaces within a lamp loft contribute because according to the Stefan
Boltzman law. 

TABLE 3. Influence of filter combinations on the radiation environment of a plant growth room 
lit with a single 1000 W metal halide lamp (after Bubenheim et al., 1988) 

No filter 

One layer 
glass 

Two layers 
glass 

20mm 
water 

40mm 
water 

PPF 
(flmol m-2s-1) 

(400-
700nm) 

400 

400 

400 

400 

400 

PI 
(Wm-2) 

(400-
700nm) 

87 

87 

87 

87 

87 

(300-
100,000 nm) 

398 

328 

312 

156 

136 

LIGHTING SYSTEM ENERGY FLUXES 

(285-
2800nm) 

235 

213 

205 

130 

129 

(2800-
100,000 nm) 

163 

115 

107 

26 

7 

PI: PI: 
Short- Total 

wave 

0.37 0.22 

0.41 0.27 

0.42 0.28 

0.67 0.56 

0.67 0.64 

The energy input to a controlled environment lighting system is dissipated in a number of ways, 
including: 

• transfer of short-wave radiation to the plant growth area 

• evaporation of water from the water screen 

• transfer of sensible heat from the components of the lamp loft to the air venting the loft 

• transfer of sensible heat to and absorption of short-wave radiation by the water screen 

• heat storage in the lamp loft 

• heat conduction from the lamp loft 

• heat conduction through the water screen between the lamp loft and the plant growth 
area. 
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The magnitude of each of these terms is, in tum, dependent on the amount of installed lighting 
and the types of lamps in use, the nature of materials used in the construction of the rooms, 
the temperature of the air used to ventilate the lamp 10ft, and so on. Nonetheless, physical 
measurements can be made of most of these components to estimate the individual 
contributions to the energy balance of the lighting system. 

In the National Climate Laboratory rooms, with the standard 8 kW lighting system, 
approximately 2.1 kW are removed via the lamp loft air ventilation system, 2.1 kW in the 
water flow, and 1.2 kW via evaporation from the water screen (Figure 3). The lag of2 - 3 
hours in achieving these heat fluxes is primarily due to heat storage within the various 
components of the lamp loft. 

1.5 ,----------------------, 

2.0 

0.5 

8 9 IO 
Lights on 

. Air 

Evaporation /-------~' 

11 12 13 14 15 16 
Time (h) 

17 

Fig. 3. Heat fluxes (kW) measured in the lamp loft of a controlled environment room 
with a lighting system comprising 4 x 1000W Sylvania 'Metalarc' and 4 x 1000W 
Philips tungsten halogen lighting. Lights were switched on at 0800 h. The depth of 
the water on the thermal barrier was 46 rom and the flow rate was 9.7 L.h-1 (other 
details of the lighting system design are provided in Warrington et al. 1978). 

OPERATIONAL ADVANTAGES OF WATER SCREENS 

The operation of a plate glass-water thermal barrier has a number of disadvantages, including 
the initial installation costs and those associated with maintenance. In contrast, however, the 
advantages are considerable. 

Firstly, the reduced thermal load results in the temperatures of plant parts, especially leaves, 
and soil being very close to air temperature. While, for example, leaf temperature will be 
determined by other factors including vapour pressure deficit and air speed, measurements 
under plate glass water thermal barriers show that leaf temperatures are within 0.5°C of air 
temperature under photosynthetic photon fluxes of 700 - 800 J,tmol m-2s-1 (Tibbitts et aI., 
1983). Consequently, true plant growth and development rates can be ascribed to actual air 
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temperatures rather than to an apparent temperature influenced by the thermal loading in the 
chamber. 

Secondly, the reduced thermal loading results in reduced refrigeration demand. The obvious 
consequence is a lower operating cost for air conditioning. However, a less obvious advantage 
is that the reduced refrigeration demand makes humidification and dehumidification much 
easier to achieve, leading to increased versatility and application of the controlled environment 
unit. 

DESIGN AND MAINTENANCE CONSIDERATIONS FOR WATER SCREENS 

There are several key elements which must be considered in the design and operation of water 
screens used in controlled environment chambers. 

• Temperature control. Control of the inlet water temperature is essential if condensation 
is to be avoided on the plant growth chamber side of the plate glass screen. The 
temperature of the water must always be higher than the dew-point temperature of the 
air in the plant growth area (Figure 4). In practical terms, this means water set point 
temperature slightly above growing area temperature (usually 2 - 4°C). 

11 

7 

Fig. 4. Schematic diagram of the equipment layout and pipe circuits required for 
maintaining the temperature-controlled water supply to the plate glass-water thermal 
barriers used in the National Climate Laboratory (1. Inlet water supply; 2. Supply 
tank; 3. ~ection system for algae control; 4. Circulation pump; 5. Filter; 6. Heat 
exchanger; 7. Main circulation system; 8. Header tank with heating element; 9. CE 
room plate glass-water thermal barrier; 10. Circulation pump; 11. Secondary 
circulation system.) 

374 



• Water depth and flow rates. There is no "optimum" operating depth for the water 
since within sensible operating limits there is little significant impact of water depth on 
either photo~ynthetic photon flux or on physiological indices such as R:FR ratio or 
phytochrome photo equilibrium. We have found 30 - 40 mm to be satisfactory as it 
provides adequate depth to allow for the fall in slope across the glass (which is needed 
to achieve water flow across the screen) with minimum rippling of the water surface. 
It is necessary to avoid ruffling of the water's surface as such conditions can result in 
considerable back-scatter of radiation and a loss of PPF across the plant growth area 
(this loss can be as great as 15%; R. Kerslake, pers. comm.) Provision of a simple 
weir can greatly assist in achieving the desired depth and uniformity of water over the 
plate glass screen. 

Flow rates must be adequate to ensure effective water movement across the thermal 
barrier and the avoidance of high water temperatures at any point on the screen. We 
use a flow rate of 10 L per minute across the 2.60 x 1.62 m screen with a resultant 
water temperature differentia~ (outlet - inlet) typically of 4 - 5°C. 

• Safety. The volume and, therefore, weight of water on the thermal barrier of a walk-in 
CE room can be considerable - in our case 200 - 250 L or 0.25 tonne. Internal support 
of the plate glass screen is, therefore, essential. The glass screen itself is 8 mm thick 
and it is preferable that it be heat-toughened. Nonetheless, the high intensity point 
sources of the high-pressure discharge lamps can result in extreme temperature 
gradients which, in the absence of a water film, can break the glass. Consequently, 
provision of continuous depth monitoring of the water film (using for example, a 
conductivity-based floatless switch), which can be programmed to switch off the 
lighting system in the event of a failure in water supply, is desirable. 

• Water quality. Supply and maintenance of clean, clear water is essential if maximum 
light transmission through to the plant growth chamber is to be achieved. Inlet water 
should be fIltered, conditioned as needed to remove mineral contamination (e.g., of 
iron and calcium), and treated for control of algae. The technologies and chemicals 
used for the operation and maintenance of swimming pools can be directly applied to 
CE water screens. The plate glass screen must also be regularly cleaned and 
accumulated solid matter (dead algae, dirt) removed as needed with a vacuum line. 

CONCLUSIONS 

The use of plate glass-water thermal barriers in controlled environment facilities effectively 
reduces the thermal load within the plant growth chamber. This allows high PPFs to be 
provided for plant growth and development studies, adequate simulation of daily light 
integrals, and simulation of peak PPFs. Further, substantial amounts of incandescent lamp 
supplementation can be used to achieve simulation of daylight R:FR ratios which are needed to 
ensure adequate stem development in some species. 

While the focus in this paper has been on the use of entire thermal barriers which separate the 
lighting enclosure from the plant growth chamber, the same principles apply to the use of 
water jackets for cooling individual lamps (such as can occur with xenon-arc lamps). In this 
instance, the barrier separating the lamps from the plant chamber can be much simpler (e.g., 
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plexiglas) as the main function of the barrier is to separate the air ventilation of the lamp 
enclosure from the air system within the plant growth chamber. 

The main advantage of water as a thermal barrier is the negligible absorption of radiation in 
the photosynthetically-active and near infra-red wavebands. Consequently, plate glass-water 
barriers typically allow transmission of approximately 90 % of radiation in these regions. 
While ventilated double and triple glazing systems appear to be attractive alternative to water 
barriers from an operating standpoint, their significant absorption in the biologically-important 
wavebands (7 - 12%) with each glass layer and longer-wave cut-offs (typically 2500 - 4000 
nm) makes them a much less attractive alternative. 
The data presented here demonstrate clearly that measurement of PPF alone is not an adequate 
representation of the radiation environment being used in a controlled environment study. The 
amounts and proportions of long-wave and short-wave radiation in a plant growth chamber are 
dependent on lamp type, lamp combination, presence of a thermal barrier, the type of thermal 
barrier between the lamps and the plant growing area and the overall construction and design 
of the chamber. It is important, therefore, in reporting results of controlled environment 
studies, to adequately describe both the details of the lighting system used and the 
characteristics of the radiation produced by that system, so results of different studies can be 
adequately evaluated and compared. 
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SHORT REpORT 

HEAT DISSIPATION IN WATER-COOLED REFLECTORS 

Toyoki Kozai 

Department of Horticultural Engineering, Chiba University, Matsudo, Chiba 271, Japan 

The energy balance of a high pressure sodium lamp with and without a reflector is given in Fig. 
1. The energy balance of a lamp varies with the thermal and optical characteristics of the 
reflector. The photosynthetic radiation efficiency of lamps, defined as input power divided by 
photosynthetically active radiation (pAR, 400-700 nm) emitted from the lamp ranges between 
0.17 and 0.26. The rest of the energy input is wasted as longwave (3000 nm and over) and non
PAR shortwave radiation (from 700 nm to 3000 nm), convective, and conductive heat from the 
lamp, reflector, and ballast, and simply for increasing the cooling load. 

Furthermore, some portion of the PARis uselessly absorbed by the inner walls, shelves, vessels, 
etc. and some portion of the PAR received by the plantlets is converted into sensible and latent 
heat. More than 98% of the energy input is probably converted into heat, with only less than 2% 
of the energy input being converted into chemical energy as carbohydrates by photosynthesis. 
Therefore, it is essential to reduce the generation of heat in the culture room in order to reduce 
the cooling load. 

Through use of a water-cooled reflector, schematically shown in Fig. 1, the generation of 
convective and conductive heat and longwave radiation from the reflector can be reduced, 
without reduction of PAR. 

With the water temperatures at the inlet being 13° C and the water flow rate being 3.2 gis, 50% 
of the energy input was removed by the water, resulting in a water temperature at the outlet of 
25°C. The temperature distribution of the lamps with different reflectors is given in Table 1. 

The warmed water coming out of the reflector can be used as a low-temperature heat source and 
for washing, because the water will not be polluted in the closed-water distribution system. 
Details of this study are provided in Kozai (1991). 

TABLE 1. Temperatures of lamp, reflector and surroundings. 

Lamp type 

A B C D E 

Lamp bulb 160 177 175 205 180 
Inner surface of 46.6 58.0 92.3 30.4 
reflector 

Outer surface of 57.0 78.8 24.6 
reflector 
Ballast 62.6 62.6 62.6 62.6 62.6 
Room air 25.1 25.0 25.1 25.0 25.0 
Floor 24.7 25.5 25.2 25.2 25.2 
Wall 25.7 25.0 25.2 25.0 24.7 
Ceiling 25.1 25.0 24.7 24.7 24.7 

For lamp types, see legend to Fig.2 
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Fig. 1. Schematic diagram of a lamp bulb with normal and water-cooled reflectors. 
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Fig. 2. Energy distribution of a high pressure sodium lamp bulb with or without a reflector 
Lamp type: A lamp without reflector; B lamp with polished aluminum reflector; Clamp 
with white-colored aluminum reflector; D lamp with white-colored enameled iron reflector; 
E lamp with water-cooled white-colored enameled iron reflector. 

380 



SHORT REpORT 
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INTRODUCTION 

Plants as result of biological evolution exhibit a complex system of pigments and 
photoreceptors and respond very sensitively to changes of the spectral irradiation. Lighting for 
ecological plant research, therefore, requires an engineering which provides a spectral 
irradiance close to natural conditions. (Kofferlein et al. 1994) Terrestrial global radiation is 
characterized by a cut-off between 280 and 320 nm by several orders of magnitude due to the 
filtering effect of stratospheric ozone (Bener 1972). A reduction of the ozone layer will cause a 
shift of the UV absorption edge to shorter wavelengths thereby increasing the integral UV 
irradiation (Fig. 1). 

The wavelength dependent interaction of biological systems with radiation is commonly 
described by appropriate action spectra (Caldwell et al. 1986). Particularly effective plant 
responses are obtained for UV radiation. Excess shortwave UV -B radiation will induce genetic 
defects and plant damage. As an example the action spectrum of DNA damage is plotted in 
Figure 1. Due to the strong wavelength dependence of this action spectrum, a shift of the UV 
absorption edge of the radiation spectrum towards shorter wavelengths will effect a significant 
increase of DNA damage. A 13% decrease of the ozone column from 320 DU to 280 DU, for 
instance, will result in a 36 % increase of DNA damaging irradiation. 

Besides the ecological discussion of the deleterious effects of the excess UV radiation there is 
increasing interest in horticultural applications of this spectral region. Several metabolic 
pathways leading to valuable secondary plant products like colors, odors, taste, or resulting in 
mechanical strength and vitality are triggered by UV radiation. Thus, in ecologically as well as 
in economically oriented experiments the exact generation and knowledge of the spectral 
irradiance, particularly near the UV absorption edge, is essential. 

The ideal filter 'material' to control the UV absorption edge would be ozone itself. However, 
due to problems in controlling the toxic and chemically aggressive, instable gas, only rather 
'small ozone filters' have been realized so far (Tevini et al. 1989). In artificial plant lighting 
conventional solid filter materials such as glass sheets and plastic foils (celluloseacetate or 
cellulosetriacetate) which can be easily handled have been used to absorb the UV -C and the 
excess shortwave UV -B radiation of the lamp emissions. 

381, 



The artificial generation of spectral UV irradiances for plant research requires more than 
appropriate combinations of lamp systems. Reliable filter systems are also necessary to cut 
the UV irradiance within defmed spectral ranges. 
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Fig. 1. Spectra of terrestrial global radiation (sun elevation 60°) for different values of 
the stratospheric ozone column. The spectra were calculated using a radiation transfer 
model based on Green (1983). The DNA action spectrum (Caldwell et al. 1986), 
normalized to 1 at 300 nm, is also plotted. The insert gives the resulting integral 
radiation dose of these spectra weighted for DNA damage. 

Lighting set-up at the GSF Phytotron 

The phytotron uses a combination of quartz halogen lamps (Osram, Halostar), metal halide 
lamps (Osram HQI D), blue light lamps (Philips TL18), and UV-B lamps (Philips TL12) in 
order to obtain a good match to the solar spectrum (Seckmeyer and Payer 1993, Payer et al. 
1993). Four walk-in-chambers and a smaller solar simulator are in operation, furthermore two 
new solar simulators are under construction. Different glass fIlter systems applied to artificial 
lighting and monitored by appropriate spectroradiometric instruments are used at the GSF 
phytotron at Munich. 

The standard UV filtering in these chambers is performed by layers of borosilicate glass 
(Tempax, and Pyran,) which exhibits a steep absorption edge near 300 nm. The respective UV 
monitoring and spectral measurements have to be performed with high precision and 
accuracy. This spectral measurement can only be achieved by a double monochromator 
providing the required wavelength resolution with a maximum of straylight rejection and with 
dynamics of about 6 decades. 

The spectral irradiances at plant level were measured in the chambers by a double 
monochromator system (Bentham, U.K.) as described by Seckmeyer (1989). The results of 
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these measurements are compared to a model of global radiation (60° sun elevation and 320 
DU based on Green 1983) as shown in Figure 2. The spectral distribution of UV irradiation 
demonstrates the close approximation to natural global radiation. The integral irradiance 
(Table 1) within the solar simulator reaches values comparable to those referring to a sun 
elevation of 60°. Within the large walk-in-chambers approximately 60% of this irradiance 
data are achieved. . 
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Fig. 2. UV spectra of the small solar simulators and the walk-in-chambers of the GSF 
phytotron (Seckmeyer and Payer 1993, Payer et al. 1993), compared to a model of 
global radiation (60° sun elevation, 320 DU) based on Green 1983. The superposed 
spectra of different lamps are filtered by borosilicate glass. 

TABLE 1 Integral parameters of walk-in-chambers, solar simulators and model of global 
radiation calculated according to Green (1983). 

Solar Walk-in Global Radiation Unit 
Simulator Chamber (60°, 320 DU) 

UV-C (200 - 280 nm) < 10-7 < 10-7 < 10-7 W/m2 

UV-B (280 - 320 nm) 2.4 0.67 2.8 W/m2 

UV-A (320 - 400 nm) 53.5 36.6 53.3 W/m2 

VIS (400 - 800 nm) 571 343 532 W/m2 

IR (800nm - 2500nm) 410 290 292 W/m2 

Total irradiance 1038 670 880 W/m2 

PAR (400 - 700 nm) 2100 1260 1940 ,umollm2s 

Erythemal dose 3 0.9 3.4 MEDIh 

llluminance 126 72 107 klx 
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Closed chambers are particularly suited for reproducible dose response studies under 
simultaneous variation of other environmental parameters. Interactive effects as well as action 
spectra will be obtained under these controlled conditions. In order to perfonn experiments on 
possible biological consequences of the predicted depletion of.the stratospheric ozone column, 
the UV absorption edge has to be varied. UV absorption edges can be varied to some degree 
by use of cut-off filters, for instance WG-filters (Schott Glaswerke, Mainz, FRG). However, 
to cover an experimental area of several squaremeters with this type of filter would not be an 
economical approach. The variation of UV absorption edges is also limited by the restricted 
graduation of filters with different cut-off wavelengths. . 

Commercial borosilicate and other glasses are used at the GSF research center in order to 
simulate different UV spectra corresponding to those resulting from a proposed depletion of 
the natural ozone layer. Glass sheets from different production batches and of different 
thickness are carefully selected to shift the UV absorption edge over a wide spectral range 
(Fig. 3). For a quantitative comparison with natural UV irradiation the spectra have been 
weighted by appropriate action spectra (Table 2). These calculations provide insight into the 
biological effectiveness of changing UV spectra. As seen from Figure 3 glass can only 
approximate the sharp absorption edge of ozone. The differences between natural and 
experimental effects have to be considered in the evaluation of such experiments. 

Ageing of filter materials 

Inside the UV compartment of the lamphouse a harsh, almost 'extraterrestrial' radiation 
environment is encountered. Materials are exposed to high levels of UV -B radiation 
(approximately 30 Wm-2) and even UV-C radiation (about 0.1 Wm-2). Filters are, therefore, 
subject to enhanced ageing processes. The effect of such ageing is demonstrated in Figure 4, 
showing the results of UV-B monitoring by a Robertson-Berger-meter (Solar Light, USA) 
obtained during a long-term experiment in the walk-in-chambers of the GSF phytotron. The 
continuous decrease of erythemal weighted UV-B irradiation at the plant level amounted to 
approximately 25% after 250 hours of UV -B lamp operation. 
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Fig. 3. Spectra of the solar simulator for different filter combinations of 5 mm 
Tempax®, 4 mm Sanalux®, 4 mm float glass.The dotted line represents the model of 
global radiation based on Green 1983 (sun elevation 60°, 320 DU). 
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TABLE 2 Integral values for weighted spectra with different filter combinations as plotted in 
Figure 3 (action spectra according to Caldwell et al. 1986). 

Spectrum UV-B DNA-damage Plant damage 
C'Nlm2) (mW/m2) (mW/m2) 

(1) 5.1 751 1000 
(2) 3.5 248 427 
(3) 2.4 123 246 
(4) 1.6 45 103 
(5) 1.2 27 64 
(6) 0.6 10 20 
(7) 0.02 1.4 0.3 

Global 2.8 102 264 
radiation 

The corresponding changes of the spectral transmittance of borosilicate glass during a period of 
100h UV irradiation are plotted in Figure 5(a). The absorption edge was red shifted during this 
period by about 3 nm and the slope is somewhat flatter. The detailed analysis (Figure 5(b)) 
revealed the transmittance decrease to be exponential with rates depending on the wavelength. A 
fast 'decay' of UV -B transmittance was obtained, particularly in the first few hours. A slower 
decrease in the UV-A range and nearly no change in the region of visible light was observed. 
These wavelength dependent transmittance changes are supposed to be caused by photochemical 
reactions within the glass and seem to be correlated to a contamination of the glass by metal 
ions, most probably iron ions. The iron content of the investigated glasses differed from batch to 
batch within a range of a few hundred mglkg. 
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Fig. 4. Decrease of UV-B during 250h of filter ageing, measured with a 
Robertson-Berger-meter (erythemal weighting of the irradiance ). 
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Fig. 5. Behaviour of borosilicate glass filters (batch 2 of Figure "3) during ageing with 
UV-B radiation of approximately 32 Wm-2. 
(a): Change of spectral transmission 
(b): Decrease of transmission vs. exposure time 

The described degradation of borosilicate filters imposes problems and limitations particularly for 
investigations using artificial irradiation in the UV -B range. Plastic materials are even less 
resistant to the extreme radiation in the phytotron lamp house and deteriorate more rapidly than 
glasses. At present there is no other choice than the periodical exchange of the whole filter set. 

CONCLUSIONS 

Different filter glasses are available which provide absorption properties suitable for gradual 
changes of the spectral UV-B illumination of artificial lighting. Using a distinct set of lamps and 
filter glasses an acceptable simulation of the UV-B part of natural global radiation can be 
achieved. The ageing of these and other filter materials under the extreme UV radiation in the 
lamphouse of a solar simulator is presently unavoidable. This instability can be dealt with only 
by a precise spectral monitoring and by replacing the filters accordingly. For this reason attempts 4 

would be useful to develop real ozone filters which can replace glass filters. In any case chamber 
experiments require a careful selection of the filter material used and must be accompanied by a 
continuous UV -B monitoring. 
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GUIDELINES FOR LIGHTING OF PLANTS IN CONTROLLED ENVIRONl\1ENTS 

Gerald Dietzer, Department of Horticulture, University of Maryland, College Park, MD, 
Robert Langhans, Department of Floriculture, Cornell University, Ithaca, NY, John Sager, 
Code MD-RES-L, Kennedy Space Center, FL, L. Art Spomer, Department of Horticulture, 
University of Illinois, Urbana, IL, Ted Tibbitts, Department of Horticulture, University of 
Wisconsin, Madison, WI 

The organizing committee outlined draft guidelines for plants to provide a focus for the 
discussions at the workshop. These were distributed to the participants before the meeting. It 
was recognized that there was insufficient data to support many of the particular quantities 
presented. The guidelines served as a basis for discussion amongst the workshop attendees and 
led to a number of recommendations that were recorded by the session chairpersons. The 
organizing committee indicated they would incorporate the recommendations and suggestions 
into a revised set of guidelines for additional discussion. Interested participants were then 
asked to indicate their willingness to review this revised set of guidelines to lead toward the 
future development of guidelines for lighting in controlled environments. It was understood 
that these guidelines will not be standards and will require upgrading and modifications as lamps 
and equipment become available and as new insights are obtained on plants response to light. 

Revised draft guidelines are included as Tables 1 and 2 that have been developed by the 
organizing committee following the suggestions obtained at the workshop. Table 1 are the 
guidelines for growth chambers and Table 2 for greenhouses. These have been distributed to the 
participants that indicated a willingness to review proposals that were developed. It is hoped that 
these proposals will lead to the development of guidelines that will have general acceptance by 
plant scientists. 
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TABLE 1 GUIDELINES FOR LIGHTING IN GROWTH CHAMBERS 

The purpose of these guidelines is to help writers of specifications, engineers, and architects, who have to make 
recommendations for the installation of lighting in growth chambers. It is not the intent of these guidelines to 
mandate the lighting a researcher may need for specific projects, but rather guidelines that indicate reasonable 
lighting that can grow acceptable crops any time of the year. 

PHOTOSYNTHETICALLY ACTIVE RADIATION (PAR) 

A daily average irradiance of 26 mol m·2 dayl will effectively grow most species of higher plants. This equates to 
an instantaneous irradiance of 300 /Lmol m·2 S·I for 24 hours or 600 /Lmol m·2 S·I for 12 hours. For comparison in 
the continental United States, the average annual daily irradiance is about 26 mol m-2 for Madison, WI and 
Washington, DC. In the summer the maximum daily irradiance is 62 mol m·2 at Phoenix, Ai and in the winter 
the minimum irradiance is 8 mol m-2 at Madison, WI (see Table 1). The maximum solar irradiance around midday 
of 2000 /Lmol m-2 S-I is transient and is not necessary for normal plant growth since the plants response is based on 
the average daily irradiance_ 

UNIFORMITY 

Less than ± 10% variation on a horizontal plane over the growing area at the plant canopy height. The variation 
should be based on measurements taken in the center of each square meter of the plant growing area_ 

SPECTRAL 

280-320 nm (Ultraviolet-B) 

320-400 nm (Ultraviolet-A) 

400-500 nm (Blue) 

500-600 nm (Green) 

600-700 nm (Red) 

700-750 nm (Far-red) 

Unspecified, but in general the effects of UV-B are deleterious to plant growth 
and developmynt. However, some plants, such as members of the Solonaceae, 
may require a small quantity ( .. 3 W m-2) to avoid abnormal development. 

Unspecified, but may have an additive effect with the requirement for blue. 

An absolute quantity for elongation control is required for most higher plants 
(~ 30 /Lmol m-2 S-I). 

Not necessary for photosynthesis, but contributes to photosynthesis and is a 
significant component of most radiation sources. 

Optimize output for maximal photosynthesis. Monochromatic red will cause 
abnormal development in some species. 

Enhancement flowering, stem elongation, etc. of certain species (as a function of 
the red/far-red ratio) with the quantity centered around 725 nm equal to or 
greater than the guantity centered around 660 nm. 

TOTAL IRRADIANCE (Over the range of 280-50,000 nm) 

A ratio of total irradiance to PAR of 0.50 or less W m-2 per /Lmol m·2 S·I (2.3 W m-2 per W m-2 PAR) is desirable to 
reduce thermal heating of plants and soil. The solar radiation ratio is less than 0.50 W m-S per /Lmol m-2 s-1 PAR. 
A ratio below 0.50 cannot be obtained with most lamps without a barrier and adequate ventilation or a luminaire 
specifically designed to dissipate infra-red radiation. For example, the ratios for metal halide lamps without a 
barrier, with an acrylic barrier, and with an acrylic barrier with 5 cm of water was shown to be 0.60,0.53, and 
0.24 W m-2 per /Lmol m·2 S-I PAR, respectively. Low temperature sources such as low pressure sodium lamps and 
light emitting diodes (LEDs) without barriers have been shown to have ratios of 0.41 and 0.28, respectively. 
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TABLE 2. GUIDELINES FOR INSTALLATION OF SUPPLEMENTAL LIGHTING IN 
GREENHOUSES 

The purpose of these guidelines is to help writers of specifications, engineers, and architects, 
who have to make recommendations for the installation of supplemental lighting in greenhouses. 
It is not the intent of these guidelines to mandate the lighting a researcher may need for specific 
projects, but rather guidelines that indicate reasonable lighting that can grow acceptable crops 
any time of the year. 

PHOTOSYNTHETICALLY ACTIVE RADIATION (PAR) 

A daily average irradiance of 26 mol m-2 day-1 from sunlight plus added supplementation will 
effectively grow most species of higher plants. Lamp lighting should be used to supplement 
sunlight and provide 26 mol m-2 day-1. Installations of lighting providing greater than 200 /lmol 
m-2 S-1 generally add too much heat to the greenhouse environment and the extra luminaries add 
too much shade. Lighting can be provided during the sunlight hours or during the night period 
depending upon the plant's photoperiod requirements, and/or depending upon the most cost
effective time to activate the lamps. Shading systems should be utilized under high sunlight 
conditions to reduce the average irradiance to 26 moles day -1. 

UNIFOR1vfITY 

Less than ± 15% variation on a horizontal plane over the growing area at the plant growing 
canopy height. The variation should be based on measurements taken in the center of each 
square meter of the total lighted area. Installation ofa uniform lighting system in the greenhouse 
is difficult. It is seldom possible to obtain this uniformity on the outside edges of the growing 
area, particularly against the walls of the greenhouse. 

SPECTRAL 

There are no special spectral requirements for the supplemental lighting for photosynthesis in 
greenhouses. Sunlight should supply the balance of wavelengths required by plants. Most 
glazings remove some portion of the ultraviolet radiation from sunlight and thus certain plant 
species, including most Solonaceous species, may have some abnormal development (oedema) 
as a consequence. However daylength extensions should use lamps high in red and far-red. 

TOTAL JRRADIANCE (Over the range of280-50,000 nm) 

Recommend that supplemental lighting produce no more than 0.6 Wm-2 of total irradiation for 
each /lmol m-2 S-1 ofPPF. 
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